

DRAFT

RECOMMENDED STANDARD
APPLICATION SECURITY REQUIREMENTS

Version 2.0

11 March 2003

DEFENSE INFORMATION SYSTEMS AGENCY
Applications and Computing Security Division
Center for Information Assurance Applications

5275 Leesburg Pike
Falls Church, VA 22041

(This document is for review. Comments, if any, can be sent to JainD@ncr.disa.mil or

KoehlerS@ncr.disa.mil)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES i

TABLE OF CONTENTS

 Page

Version 2.0..1
1. INTRODUCTION ..1

1.1 Purpose..1

1.2 Scope ...2
1.3 Intended Audience...2
1.4 Document Structure ..2

2. BACKGROUND...4
2.1 DISA’s Role in Application Security...4
2.2 What is an Application? ...4

2.3 Goal of Application Security...4
3. VULNERABILITIES, SECURITY SERVICES, AND ASSURANCE REQUIREMENTS..7

3.1 Application Vulnerabilities ..7

3.1.1 Common Vulnerabilities..7
3.1.2 Causes of Vulnerabilities...12
3.1.3 Discovering Application Vulnerabilities ..13

3.2 Application Security Services ...13
3.2.1 Identification and Authentication...13
3.2.2 Authorization...14

3.2.3 Access Control ..14
3.2.4 Confidentiality...14
3.2.5 Integrity ..15

3.2.6 Availability ..15
3.2.7 Accountability ...15
3.2.8 Non-Repudiation...15

3.3 Assurance of Application Security Mechanisms ...15
3.3.1 Mission Assurance Categories..16
3.3.2 Sensitivity Levels ..17

3.3.3 Levels of Concern and Levels of Robustness..17
3.3.4 Strength of Cryptography..19
3.3.5 X.509 Certificate Assurance Levels ..20

4. APPLICATION SECURITY REQUIREMENTS ..21
4.1 Assistance for Implementing these Requirements...23
4.2 Exclusions from this Document ..23

4.3 Application Interaction with Underlying Host...24
4.4 General Use of Cryptography..25
4.5 Design and Coding..28

4.6 Identification and Authentication (I&A)...38
4.7 Authorization and Session Control...46
4.8 Access Control...48

4.9 Confidentiality ...53
4.10 Integrity ...56

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES ii

4.11 Availability...61
4.12 Accountability..66

4.13 Non-Repudiation ...70
4.14 Preparation for Deployment ..71

(Page intentionally blank)..73

APPENDIX A: ACRONYMS AND ABBREVIATIONS...74
APPENDIX B: REFERENCES ..77

B.1 DOD-Wide Policy and Guidance...77

B.2 DISA Policy and Guidance...78
B.3 Intelligence Community Policy and Guidance..79
B.4 Civilian Agency Policy and Guidance ..79

B.5 Best Practices...79

LIST OF FIGURES

 Page

Figure 2-1. Typical Application Architecture ...6

LIST OF TABLES

 Page

Table 3-1. Common Application Vulnerabilities..8

Table 3-2. Mission Assurance Categories..16

Table 3-3. Levels of Concern and Levels of Robustness ..18

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 1

1. INTRODUCTION

1.1 Purpose

This document defines a set of recommended security requirements that are common to all
software applications. The application security requirements identified in this document are
intended to be used as a first step to designing security into applications to reduce application
vulnerabilities. The general requirements will aid application developers in the identification
and elimination of potential application vulnerabilities and security flaws proactively during the
early phases of the lifecycle. Furthermore, this document contains security requirements specific
to the Oracle database management system (DBMS) and Oracle applications that can be used to
reduce development-related vulnerabilities.

This document also defines a “test objective” for each of the general requirements. The test
objective is used to verify that the associated security measure is implemented within the
application. These test objectives should help form the basis for the application’s general test
plan, and also provide input to the security test plan used for the application’s Security Test and
Evaluation (ST&E, see below). The test objectives can also be used to augment the security
requirements and test objectives for the larger system to which the application may belong.

The requirements contained in this document include a compilation of existing DOD application
requirements and a collection of security requirements that have been derived from security “best
practices”.

This document should be used as a reference during the phases of the DOD Information
Technology Security Certification and Accreditation (C&A) Process (DITSCAP), i.e.:

• Phase 1: This document can be used to identify the application security requirements as
you are identifying the system security criteria.

• Phase 2: This document should be referenced to conduct application security assessment
as you are conduc ting the system certification analysis.

• Phase 3: Program managers should refer to this guidance when developing test plans and
procedures for the ST&E of the application and/or the system of which it is a
component..

• Phase 4: This document should be referenced to maintain the application security posture
as you are managing the system security.

In addition, these requirements will be used in conjunction with Defense Information Systems
Agency’s (DISA) Security Technical Implementation Guides (STIGs) during the development
cycle. The STIGs can be downloaded from the IASE (http://iase.disa.mil) or Field Security
Operations (FSO) Guides (http://guides.ritchie.disa.mil) Web sites. Developing a STIG-
compliant system and applying the recommended requirements listed in this document will
ensure a higher level of security within an application.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 2

Associated with this document, is the Application Security developer’s guide developed to assist
developers with implementing the requirements identified in this in Section 4. The third and
fourth documents in this series identify application security assessment tools and present
assessment methodologies that can be used to validate the test objectives presented in this
document.

1.2 Scope

This is a “living” document.” Application security requirements and test objectives will be
refined as the document evolves. The “application specific” security requirements will also
continue to be refined and added to as requirements for other applications are incorporated into
the document.

This document identifies common vulnerabilities and develop requirements to reduce the
occurrence of these vulnerabilities in applications. The vulnerability list is not all- inclusive and
will be amended as required. This document does not contain vulnerability remediation
information. Specific guidance on methods to avoid some of the general and specific
vulnerabilities identified in this document are presented in the ‘Application Security Developer’s
Guide associated with this document.

1.3 Intended Audience

Application developers should use this document as a guide for designing and implementing
security features in their applications to run on DOD systems securely. The document will help
application developers identify the application security controls to avoid creating vulnerabilities
in their applications.

Furthermore, this document should assist application developers with creating well thought-out
application designs that integrate security mechanisms early in the development lifecycle.

Some of the information in this document may also be beneficial to system administrators and
system security engineers. However, system administrators and system security engineers
interested in configuration and operational security requirements should refer to the various
STIGs currently available from DISA.

1.4 Document Structure

This document consists of five sections and one appendix. An overview of the sections is
provided below.

• Section 1, Introduction: Describes the objectives, scope, and structure of this document.

• Section 2, Background: Describes the DISA client’s organizational mission, general
application types, and the goals of application security.

• Section 3, Application Vulnerabilities, Security Services, and Assurance Requirements:
Describes common applications vulnerabilities, security services performed by
applications, and a discussion on criteria for determining security mechanism strength.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 3

• Section 4, Application Requirements: Provides the security requirements and test
objectives developed for general applications, grouped by the requirement categories
defined in Section 3.

• Appendix A, Acronyms and Abbreviations: Lists the acronyms and abbreviations used
throughout this document.

• Appendix B, References: Lists policy and guidance, and other documentation and online
sources used to develop the application security requirements and test objectives
provided in this document.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 4

2. BACKGROUND

2.1 DISA’s Role in Application Security

The mission of the DISA Application and Computing Security Division (Code API24) is to
provide for the identification, development, system engineering, prototyping, provisioning, and
implementation of various technologies supporting the defense- in-depth (DID) concept for multi-
layered protection of the global applications and computing infrastructure of the global
information grid (GIG).

The DISA Application and Computing Security Division has identified a set of application
security requirements and common vulnerabilities for applications. It will identify these
requirements in this document and define “test objectives” to provide DISA and other DOD
agencies with application security guidance.

2.2 What is an Application?

An application is a software program or collection of software programs that execute on behalf
of the operating system. An application uses the services of the computer’s operating system and
other supporting applications and is designed to perform a specific function directly for the user
or, in some cases, for another application program.

For this document, the applications have been grouped into three main categories: server
applications, client applications, and standalone applications:

1. Server applications-organize, retrieve, and/or transmit data at the request of a client
application. Server applications include DBMS, Web servers, and directory server
applications that organize, relate, store, manipulate, delete, retrieve data, and respond to
user requests, made via client applications;

2. Client applications-request information from a server application for presentation to an
end user, and to enable the end user to create, modify, and/or request storage or
transmission of data by the server application;

3. Standalone applications-request storage and retrieval of data by the operating system’s
file system, to organize and present those data to the user, and to enable the user to create,
modify, and/or transmit data.

The general requirements and test objectives developed in Section 4 will be applicable to some
or all of the applications types described above.

2.3 Goal of Application Security

Application security, ultimately, provides the assurance that the application complies with and,
when necessary, enforces, all security policies governing the application itself, the data it
handles, the system to which it belongs, its operating environment, and its users. Application
security has three primary objectives:

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 5

1. Ensure that the data an application creates, updates, stores, and/or transmits are protected
from unauthorized disclosure, tampering, corruption, and destruction, by the application’s
users, by processes external to the application, and by the application itself.

2. Provide another security layer within the overall system, in accordance with DID
strategy.

3. If required, provide security services that are not performed adequately or, in some cases,
at all, by other parts of the system security infrastructure (e.g.; network, operating system,
database management system security mechanisms, and any other security mechanisms
within the overall system but external to the application). For example, if the access
controls of the application’s host are considered inadequate for protecting sensitive files
created or modified by the application from disclosure, the application may include a
programmatic interface to a cryptographic facility located in the surrounding
infrastructure, enabling the application’s “SAVE” process to invoke encryption each time
it writes a file, thus causing the file to be stored in encrypted form instead of in the clear.

To achieve these objectives, the applications are responsible for ensuring that a core set of
security services is performed. Applications can achieve the performance of security services via
one of three ways:

1. By performing certain security services itself: for example, the application may need to
perform its own logging of security-relevant events at the application level (vs. auditing
at the operating system or DBMS level)

2. By directly invoking security services to be performed by middleware or infrastructure
security mechanisms: for example, the application may include a programmatic interface
or system call to a PKI to perform certificate validation in support of application
identification and authentication (I&A) of users

3. By verifying that certain security services have been performed by middleware or
infrastructure security mechanisms: for example, the application may be programmed to
check for a flag or counter applied to a file by an external virus checker, to verify that the
file has, in fact, been determined to be virus-free by that virus checker.

The following architecture diagram depicts the relationship of a typical software applications and
its programmatic interfaces to its underlying host infrastructure and operating environment. The
host infrastructure in this architecture incorporates the middleware and other supporting
protocols not coded into the application itself, as well as the host platform (system software and
hardware, including network and non-network device drivers and hardware).

The requirements in this document pertain to the software at the application layer of this
diagram, and also to how that software interfaces with and relates to components at the lower
layers.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 6

DEVELOPED APPLICATIONS
• Java
• C, C++
• Perl
• other CGIs
• HTML, XML
• SQL

THIRD-PARTY APPLICATIONS
• Portal
• Browsers
• Plugins

SECURITY SERVICES
• Authentication (SSL/TLS, X.509, Kerberos)
• Authorization, Access Control (X.509, ACL, Kerberos)
• Encryption (SSL/TLS, AES, 3DES)
• Integrity (SHA-1, DSA)
• Input Validation (3rd party filters, Virus scanners)
• Non-Repudiation (DSA)
• Auditing/Logging

OTHER SERVICES
• Web (e.g., HTTP, HTTPS, WebDAV)
• Messaging (SMTP, X.400)
• Directory (LDAP, X.500)
• Other comms (e.g., FTP)
• DBMS (SQL, XML)
• Object Management (e.g., ORB)
• Multimedia (e.g., Flash)
etc.

APPLICATION

MIDDLEWARE
& SUPPORTING

PROTOCOLS
NOT CODED

INTO THE
APPLICATION
(provided by Web

server or third party
add-on)

Firewall VPN

DMZ

Applic.
Server

INFRASTRUCTURE
(OS, hardware, network)

• PKI, KMI
• SSO, password management, policy management

Router

• Sockets

Web
Server

INTERNET
or

EXTRANET

INTERNET
or

EXTRANET

Proxy

SERVER PLATFORM
• File system (NFS, AFS, etc.)
• OS services, libraries, drivers
• TCP/IP stack
• PKI token
• Biometric device
• Computer hardware
etc.

NETWORK (OPERATING ENVIRONMENT)

APPLICATION PROGRAMMATIC INTERFACE (GSSAPI, RPCs, call-level interfaces, SOAP, IIOP, others)

NT

UNIX
DBMS

SSO
Server

I
N
T
R
A
N
E
T

Win2K

Figure 2-1. Typical Application Architecture

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 7

3. VULNERABILITIES, SECURITY SERVICES, AND
ASSURANCE REQUIREMENTS

3.1 Application Vulnerabilities

The application vulnerabilities fall into three general categories:

1. Design and development-related vulnerabilities: Vulnerabilities that are caused (and can
be prevented by) the designer and developer.

2. Misconfiguration and administration-related vulnerabilities: Errors that are introduced
by administrators or operators when or after the application is installed in its operational
environment.

3. Necessary non-secure standards: Vulnerabilities attributed to the implementation of a
known non-secure protocol in order to perform a specific mission requirement. It may be
necessary to utilize a known non-secure protocol to communicate with an older (legacy)
system so that a required mission or business need can be performed. For example, SSL
version 2 is known to be “broken” but if it is the only protocol supported by an
obsolescent system, then mission need may override the risk.

The requirements in Section 4 of this document predominantly address vulnerabilities that fall
into the first category (i.e., development-related vulnerabilities); a small number of requirements
address vulnerabilities in the second category (i.e., misconfiguration/administration-related
vulnerabilities, and specifically vulnerabilities caused during initial installation/deployment of
the application). The third category of vulnerabilities (i.e., non-secure standards) is not addressed
in this document, but is addressed to some extent throughout the Application Security
Developer’s Guide.

3.1.1 Common Vulnerabilities

Some of the most frequently reported vulnerabilities found in applications are identified below.
The vulnerability codes will appear in the tables in Section 4, to identify the vulnerabilities that
are addressed, in full or in part, by the security requirements in those tables.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 8

Table 3-1. Common Application Vulnerabilities

Vulnerability Information About Vulnerability
V1: Inadequate
identification and
authentication

Including authentication of users who should not be authenticated, or not requiring
authentication at all.

V2: Insufficient access
control

Restrictions on what authenticated users are not allowed to do are not properly
enforced. Attackers can exploit these flaws to access other users’ accounts, view
sensitive data, or use unauthorized functions.

V3: Improper integration
of application components

Integration that leaves “backdoors” or “security holes” that make it possible for users
to bypass access controls, second-tier I&A, or other security controls, or to read
security data passed between components. This includes incorrect interfaces between
the application and any cryptographic mechanisms it relies upon.

V4: Weak passwords Passwords that are too short, easy to guess, or not changed frequently enough.
V5: Plain text
communication of
sensitive information

Such as cleartext transmission of user passwords.

V6: Incorrect reparsing of
data

Such as user-provided identification data passed between application and backend
server.

V7: Susceptibility to
buffer overflow

Application components (e.g., software libraries, drivers, application server
components, CGI scripts, etc.) in C, C++, and some other languages do not properly
limit input. Buffer overflow is caused by the developer’s specification of a fixed or
maximum (i.e., able to be exceeded) size of the data cache buffer allocated for storing
data input into application program (e.g., by user through a forms interface); if the
actual data exceeds the allotted buffer size, the excess data “spills over” from the data
buffer into the processing cache (known as the “stack”), where it can cause denial of
service (DoS) or, in some cases, be exploited by an attacker to take control of a
process.

V8: Lack of adequate
parameter validation

Information from user requests that is not validated before being used by the
application can enable parameter tampering exploits by attackers, in which the attacker
targets backend components through the application.

V9: Input validation of
data containing active
content

Can cause the active content to execute, and make the application vulnerable to “cross
site scripting.” In cross site scripting attacks, the application can be used to transport
an attack to an end user’s browser, allowing the attacker to view the user’s session
token, attack the user’s workstation, or spoof content to fool the user into responding
to the Web server in a way that the user’s doesn’t expect or intend.

V10: Acceptance of meta
code embedded within
input data

Enables “stealth commanding,” i.e., the insertion of shell metacharacters in data
input—e.g., “!” (which is used to access the command history in some shells;
particularly troublesome in tcsh, where “!” can be used not just interactively, but in
scripts) and “|” (the “pipe”) in Perl. Many Perl programs allow the user to input a
filename, and then pass that filename to a program via a shell command. However,
because the shell may interpret characters differently than the Perl program, if the user
includes “|” within the filename, the shell will attempt to execute the rest of the
filename as a program; this vulnerability enables a malicious users to designate an
ostensible filename containing the “|” followed by a complete control string as the
“rest of the filename” in order to trigger hidden debug code or other developer
backdoors left in deployed code (another vulnerability). Similarly, metacharacters and
other special characters may enable a malicious user to insert entire programs in the
application’s data input fields, a technique called “cross site scripting.”

V11: Acceptance of illegal
characters in structured
query language queries

A problem with SQL queries embedded within input data, which can cause the
execution of spurious database commands.

V12: Use of relative
pathnames

Enables users to gather information about the directory structure and content—
information that can be used to launch other types of attacks.

V13: Acceptance of
truncated pathnames

If no filename is specified at the end of the pathname, the system may simply list the
full directory contents to the user, enabling the hacker to gather information about the

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 9

directory structure and content.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 10

Vulnerability Information About Vulnerability
V14: Links to pathnames
no longer present on the
server

Such links may reroute the user to the Parent Directory, or even the “root” directory,
enabling the user to gather information about the directory structure and content.

V15: Inadequate or
inefficient error or
exception handling or
recovery

Error conditions that occur during normal operation are not handled properly by the
application. If an attacker can cause an error that the application is unable to handle,
the attacker can obtain detailed system information, cause denial of service to the
application security mechanisms, the entire application, or the server on which the
application runs. Furthermore, the application does not fail safe, making resources
vulnerable to attack during/after failure. The application does not ensure restoration to
a secure state after restart. The application enables attackers to flood the application
with malformed arguments, overwhelming the exception/error handling facility, and
causing denial of service.

V16: Common Gateway
Interface (CGI) script
“holes”

CGI scripts can present security “holes” in two ways: (1) They may intentionally or
unintentionally leak information about the host system that will help hackers break in.
(2) Scripts that process remote user input, such as the contents of a form or a
“searchable index” command, may be vulnerable to attacks in which the remote user
tricks them into executing commands. These “holes” be exploited to compromise
applications that run as “root,” or even to exploit applications that run with minimal
privileges, to gain direct access to the underlying OS.

V17: Presence of
developer backdoors

The application code has not been adequately debugged, “cleaned up”, tested, or
certified before going into production. “Clean up” entails removal of debugging
accounts, debugging passwords, debugging tools, debugging and testing flags, and
other developer “backdoors” from the application code and operating environment
before operational deployment. Such backdoors often grant the user higher (developer-
level) privileges on the system, and can be exploited by attackers who discover them in
deployed applications.

V18: Password grabbing
and replay

A problem when passwords are transmitted in the clear and/or over an unencrypted
link.

V19: Susceptibility of
cookies to content changes

Because of inadequate security protections in, cookies are particularly vulnerable to
alteration (“cookie poisoning”)—for example, to change the user identity information
in the cookie, enabling a malicious user to use the cookie to impersonate a valid user.

V20: Lack of access
controls on directly-typed
Uniform Resource
Locators (URL)

A problem if access controls are implemented at the application level, and expect all
access attempts to be made by clicking a link on the portal or Web page because the
access controls will not be invoked if the URL is directly typed into the browser’s
“Location” line instead.

V21: Use of hidden fields If a hidden field is used in a Web page without validating the source of Hypertext
Markup Language (HTML) updates to the field, the page will be susceptible to
“hidden manipulation,” a kind of replay attack in which the user captures the HTML
source, changes the content of the hidden field, then plays the modified HTML source
back to the server, which will accept the new hidden field value. This method is most
often used by malicious users to lower (to zero) the prices of expensive items sold via
E-commerce. Similarly, a CGI script could have its parameters modified to search not
for the hidden field containing a price code, but instead for a hidden password file.

V22: Susceptibility to
Web page “defacement”

The Web pages stored and accessed by the application can be modified or replaced by
unauthorized users, due to V1, V2, V34, V35

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 11

Vulnerability Information About Vulnerability
V23: Incorrect
interoperation with
surrounding security
infrastructure

The application’s interfaces to its surrounding security infrastructure, e.g., its
invocation of PKI components, are insecure or contain errors, thus providing “holes”
through which attackers can compromise both the application and the infrastructure.

V24: Insufficient or
alterable tracking and
recording of user actions

The application does not adequately detect and/or log security-sensitive functions
performed by its users, making it difficult to do a forensic analysis of a violation that
may have been instigated through use of the application. Also, the application may not
protect the integrity (against modification) and availability (against deletion) of its
logs.

V25: Presence of
unnecessary system calls,
processes, libraries, data
types, etc.

The application code contains processes, calls, data types, etc. that are never invoked or
used by the application. These calls, if detected by an attacker, can be used to cause the
application to behave in unexpected ways.

V26: Granting of
excessive or unnecessary
privileges

Users or application processes are granted privileges that exceed their authorization
rights, or that are unnecessary for them to perform the operations they are, according to
their role, group, or individual identity, supposed to perform. This problem can occur at
two levels: authorization of users that grants them excessive privileges, while
authorization of processes within the application can cause them to demand more
privileges than the user on whose behalf they operate is entitled to.

V27: Resource conflicts
make application
susceptible to subversion
or failure

Different processes in the application attempt to access the same resource, e.g., to write
to the same me mory address, simultaneously, causing a conflict that may lead to a
suspension of processing that may be exploited by an attacker.

V28: Unnecessary
complexity

The application is unnecessarily complex—the code is poorly structured and internally
inconsistent, contains lots of GoTos and recursions, making it difficult to trace a single
function from initiation to termination; it contains long multifunction modules instead
of short single-function modules; it contains processes with multiple entry and exit
points; it attempts to perform too many complicated or seldom-needed functions. In all
cases, the complexity makes the application very difficult to certify and accredit, and is
much more likely to contain undetectable vulnerabilities that can be found and
exploited by attackers.

V29: Insecure installation
or configuration

Failure to assign the most restrictive host access controls possible to the directories
containing the application executables, files used by the applications, and data created
by the application that will still allow the application operate correctly. Failure to
remove developer “backdoors” (debug accounts and functions), and to change default
passwords, etc.

V30: Presence of insecure
(non-certified) third-party
components

The application has been integrated to contain software and/or hardware components
that have not been certified under NIAP to an Evaluation Assurance Level sufficient to
protect the application and its data from the risks of its particular operational situation
and environment. Because modifying the source code of non-Open Source third-party
components is usually not viable, determining how to fix vulnerabilities in these
components, and in their interfaces with the rest of the application, is difficult and
usually requires full cooperation of the vendor, which is often not forthcoming with
larger corporations.

V31: Use of insecure
system calls, processes,
services, libraries, data
types, etc.

The application code uses system calls, processes, software libraries, services, etc. that
contain known vulnerabilities or represent known threats to the application’s security,
for example HTTP instead of HTTPS for transmission of sensitive Web data; C/C++
libraries that lack input validation and thus introduce buffer overflow vulnerabilities;
system calls that can cause buffer overflow situations, etc.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 12

Vulnerability Information About Vulnerability
V32: Lack of protection
from malicious code

The application’s host and surrounding infrastructure do not adequately scan for
viruses and other malicious code, and the application itself provides no interface to a
virus scanning facility. In the case of mobile code applications, the application
provides no sandboxing mechanism.

V33: Persistent processes,
sessions, connections
susceptible to hijacking

The application fails to terminate processes, network connections, or user sessions
within a configured timeout, and instead allows them to remain active indefinitely;
or the configured timeout is too long.

V34: Inadequate protection
of data in transit from
tampering

The application does not invoke an integrity mechanism such as a digital signature or
message digest hash and affix that mechanism to data before transmitting them.

V35: Inadequate account
and session management

Account credentials and session tokens are not properly protected. Attackers can
compromise passwords, keys, session tokens, or other tokens to defeat authentication
restrictions and assume other users’ identities.

V36: Command injection When the application passes parameters, or SQL commands, as they access an
external system—e.g., database, operating system, etc.—the attacker may be able to
embed malicious commands in the passed parameters, causing the external system,
which does not suspect the sabotage of the parameters, to execute those commands.

V37: Insecure remote
administration

Many Web applications allow administrators to access the Web server using a
browser interface. Unless the browser-server session is strongly protected (e.g.,
using SSL, X.509 certificates, etc.), an attacker may hijack the session or intercept
the sensitive data flowing between browser and server, in order to inject spurious
commands, tamper with the data, or disclose sensitive information that can be used
to help mount an attack on the application.

V38: Multiple programming
languages

The application is written in a variety of non-interoperating languages, making it
very difficult to abstract security-related code behind a clean API. Security-related
code is scattered throughout the application, resulting in multiple replications of the
same vulnerabilities throughout the application.

V39: Use of programming
language(s) not conducive to
development of secure
applications

The language used for developing the application is not conducive to writing
security-related code. This is particularly true of languages used in Web applications,
such as Pre-Hypertext Processor (PHP) and Microsoft Visual Basic Scripting Edition
(VBScript) are untyped, and thus make it very difficult to predict their compile -time
behavior.

3.1.2 Causes of Vulnerabilities

Development-related vulnerabilities are typically introduced into applications in one of the
following ways:

• Insufficient security requirements: The application’s security requirements are
incomplete or poorly defined;

• Weak design: The overall application design does not incorporate security effectively.
For example, a poorly designed session-handling mechanism in a Web application may
allow users to manipulate cookies in a way that enables them to bypass authentication
controls and change accounts at will;

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 13

• Implementation errors: Coding errors and other “bugs” that can be exploited by hackers
to alter application functionality or to run arbitrary commands. Implementation errors
include buffer overflows, format string errors, and race conditions. Implementation errors
make up the majority of reported vulnerabilities in commercial off-the-shelf (COTS)
applications;

• Malicious code: Back doors, logic bombs, and salami code are examples of malicious
code inserted into code by programmers to be later exploited by them for their own ends;

• Deployment errors: Errors that result from improperly deploying the application into
production. Includes making incorrect assumptions about the deployment environment in
which the application will operate, failure to remove debugging accounts and passwords,
and failure to accurately maintain version control;

• Inadequate quality assurance and testing: Unless security is incorporated into quality
assurance (QA) and testing of applications, the vulnerabilities described above, such as
design flaws and buffer overflows, will not be caught during testing. Regular software
testing should be expanded to include not only tests against normal, expected data sets,
but also tests that subject the application to typical hacker attacks.

3.1.3 Discovering Application Vulnerabilities

Although some first-generation application vulnerability scanning tools that check for known
vulnerabilities in applications have come on the market, the most effective way of eliminating
most application vulnerabilities remains a thorough, expert analysis of the application source
code. Numerous vendor and open source code scanning tools also are available. Some of these
same tools are, in fact, tools used by hackers to scan applications to gather information about
application source code—including Hypertext Markup Language (HTML), JavaScript, and
particularly browser source code (which is not private)—to discover the application’s exploitable
vulnerabilities.

3.2 Application Security Services

The following sections identify security services that may be performed or invoked by an
application and define the security service as it relates to application security requirements
presented in this documents.

3.2.1 Identification and Authentication

Application identification and authentication (I&A) is a two-stage process designed to ensure
that the user that is attempting to use the application to perform some function is provably known
to the application. The first stage of I&A is identification—i.e., the recognition by the application
of a user’s identity (or of the identity of a process acting on a user’s behalf). This identification
of the user is most often achieved through the use of a unique machine-readable name associated
with the user. The second stage of I&A is authentication, whereby the application verifies that
the user’s identity does, indeed, belong to the user who claims it. Authentication is achieved by
validating a trustworthy credential associated with the user’s machine-readable name. This
credential may be a password (static or dynamic), a digital certificate, or a biometric. I&A is the

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 14

basis for all other security in the system because I&A establishes the trust relationship between
the user and the application.

3.2.2 Authorization

Application authorization is the process whereby an authenticated user’s (or process’) identity is
associated with (bound to) the rights and privileges that will govern his ability to access data
using the application, and to perform particular application functions. Authorization is usually
implemented through one or more of the following:

• Binding of an individual user to a role (i.e., Role-Based Access Control [RBAC]) or a
user group, whereby the user “inherits” the privileges, access rights, and functions
associated with that role or group,

• Assignment of Discretionary Access Control (DAC) permissions to the user,

• Inclusion of the user in an access control list (ACL),

• Inclusion of authorization extensions in the user’s X.509 certificate,

• Assignment of an American National Standards Institute (ANSI) X9.57 attribute
certificate to the user.

3.2.3 Access Control

Application access control is closely related to application authorization and ensures that access
to the application’s data and functions is permitted only according to the permissions explicitly
stated in the user’s authorizations, and that no access is allowed by an unauthorized user or by an
authorized user in violation of the user’s authorizations.

3.2.4 Confidentiality

Application confidentiality is the assurance that the information created and used by the
application (including information pertaining to network addresses, identities of users) cannot
and will not be disclosed to unauthorized persons. Applications are responsible for ensuring the
confidentiality of information they store and information they transmit. Confidentiality is usually
implemented through one of the following:

• Invocation of an infrastructure cryptographic mechanism to encrypt the data and/or the
network connection over which the data are transmitted, with only authorized parties
having access to the keys required for decryption,

• Binding of information labels and markings to data created and modified using the
application,

• Assurance that object reuse has been enforced, including deletion of temporary data,
cache, and files created by the application program during execution.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 15

3.2.5 Integrity

Application integrity is the assurance that the information, executable processes, and resources
that constitute the application and those used by the application can and will be protected from
unauthorized, unanticipated, or unintentional corruption or modification. Applications that are
used to create and modify data are often responsible for ensuring that the data are accurate.

3.2.6 Availability

Application availability is the assurance that the data, executable processes, and system resources
that constitute the application and those used by the application will be in place (in the case of
executables, operational) when the user (or process) needs them and will be in the form needed
by the user.

3.2.7 Accountability

Application accountability is the assurance that all activities and transactions performed through
the application by users (or processes acting on behalf of users) are traced back to those users, in
order to hold them for those activities/transactions. The most common mechanism for
implementing accountability is auditing. In many application environments, audit mechanisms
are provided only at the operating system and database management system (DBMS) levels. For
this reason, application audit must be achieved by capturing data through the application’s event
logging or error logging mechanism, which may have to be modified in order to allow for
capturing of security-related events—and information about those events—that would not
otherwise be captured by the logging mechanism.

3.2.8 Non-Repudiation

Application non-repudiation is the irrefutable, provable association of the identity of a user (or
process operating on a user’s behalf) with a piece of information (datum) that the user used the
application to create, modify, delete, transmit, or receive. This information may be a file or
message, the user’s security information (e.g., authorizations) used by the application, or the
application’s own configuration data.

3.3 Assurance of Application Security Mechanisms

In addition to defining a requirement for a given application security mechanism, it is important
to determine the optimal and minimal acceptable strength—assurance—of that mechanism given
the risk assessment of the application and its operating environment. This risk assessment will
determine the vulnerability of the operational environment and of the application itself, based in
part on its purpose, criticality, and functionality, and given these factors the susceptibility to
threats.

Significant factors in determining the application’s susceptibility to threats are the sensitivity and
classification of data to be handled by the application and the clearances and/or other
authorizations of the application’s end users. The more sensitive the data, the higher value it
represents as a potential target, the stronger it needs to be protected from attack.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 16

What follows is a high- level overview of the factors to be considered when determining the
appropriate level of assurance for application security mechanisms. Refer to Department of
Defense Instruction (DODI) 8500.2 (6 February 2003), “Information Assurance (IA)
Implementation”, E.4 Enclosure 4 “Baseline Information Assurance Levels” for a more
comprehensive discussion of this material.

Further guidance that may also be helpful, based on the correlation of Common Criteria
Evaluation Assurance Levels and Strength of Mechanism Levels with Office of Secretary of
Defense Global Information Grid Information Assurance Policy-defined Robustness Levels, is
found in the NSA Information Assurance Technical Framework (IATF), in Section 4.5
(“Robustness Strategy”), with further discussion of Robustness Levels provided in Appendix E
of the IATF. These discussions are clear and concise and provide practical examples.

3.3.1 Mission Assurance Categories

In DOD, the criticality and risk profile of applications (and their associated data) are expressed in
terms of Mission Assurance Category. The lower the number of the Mission Assurance
Category, the more critical the application and the more important that its security mechanisms
and functionalities be robust in terms of assurance against potential threats to confidentiality,
integrity, and availability.

Mission Assurance Categories express the application’s mission criticality and associated
characteristics, based on its purpose and its user community. DOD has defined three Mission
Assurance Categories for characterizing DOD systems and applications. Table 3-2 presents the
Mission Assurance Categories as defined in DOD Directive (DODD) 8500.1, Information
Assurance (1 February 2002), DODI 8500.2, Information Assurance (IA) Implementation (6
February 2003), and the Assistant Secretary of Defense memorandum Department of Defense
Public Key Infrastructure (PKI) (12 August 2000).

The application’s Mission Assurance Category should be used as a criterion when determining,
in particular, the necessary assurance of the application’s availability, including the availability
of its security functions—whether those functions are incorporated into the application itself, or
are provided by external mechanisms/processes and called by the application. A MAC I
application will necessarily require a stronger assurance of availability, and thus should be
designed to incorporate availability measures and countermeasures, such as internal
redundancies, robust error/exception handling, fault tolerance, etc. that will not necessarily be
required for a MAC III application.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 17

Table 3-2. Mission Assurance Categories

Category Characteristics of Data Characteristics of Systems Old
Designation

MAC I Vital to operational readiness or
mission effectiveness of deployed
and contingency forces. Absolutely
accurate, timely, available on
demand. Classified, sensitive, or
unclassified.

National Security Systems*, including systems
used to directly perform: Intelligence activities,
cryptologic activities related to national security,
command and control of military forces integral
to weapon or weapons system. Also other
system directly critical to military or intelligence
missions.

Mission
critical

MAC II Important to support of deployed and
contingency forces. Absolutely
accurate. Can sustain minimal delay
without serious effect on operational
readiness or mission effectiveness.
May be classified; more likely
Sensitive But Unclassified (SBU) or
unclassified.

Identified by combatant commanders (CDRs):
systems which, if not functional, would preclude
the CDR from conducting missions across all
operations, including Readiness, Transport,
Sustainment, Modernization,
Surveillance/reconnaissance,
Finance/Contracting, Security, Safety, Health,
Information Warfare, Information Security

Mission
support

MAC III Necessary to conduct day-to-day
business. No material short term
effect on support to
deployed/contingency forces. May be
classified; much more likely SBU or
unclassified. Required to perform
department-level and component-
level core functions.

Administrative n/a

 * As per Clinger/Cohen Act, Title 10 of the U.S. Code, Section 2.3.10

3.3.2 Sensitivity Levels

In addition to the application’s Mission Assurance Category, the sensitivity of the data the
application handles should be cons idered when determining the type and assurance level of
security services the application must provide or obtain from its underlying host/infrastructure.
An application that is used to handle data of a certain classification level will likely have
different requirements for the type and assurance level of the confidentiality services it provides
(or calls out to) than an application that is used to handle sensitive-but-unclassified (SBU) data,
or publicly-releasable data. In addition, the non-hierarchical nature of the data—whether it is
compartmented, caveated, categorized, or SAMI—may also affect the types and assurance levels
of the application’s required confidentiality services. While there will be some confidentiality
requirements that must be met by all applications, regardless of the sensitivity of the data they
handle, the technology used to satisfy those requirements, and the assurance level of that
technology, will likely vary depending on the sensitivity of the data to be handled.

3.3.3 Levels of Concern and Levels of Robustness

The third set of factors to consider in determining security requirements are those associated with
the formalized expression of perceived risk and the formalized expression of the strength of
countermeasures to be employed to counteract that risk, specifically in terms of the strength of
Information Assurance (IA) solutions and services used as anti- risk countermeasures.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 18

The formalized expression of risk is the Level of Concern. The Level of Concern may be
associated with the entire environment in which an application will operate, or it may be
associated with the specific system to which the application belongs. In either case, Level of
Concern expresses the potential vulnerability of the system or environment that is created by the
perceived threats posed to it.

The formalized expression of countermeasure strength is the Level of Robustness. As with Level
of Concern, Level of Robustness may be associated with an entire operating environment, or
with a specific system. Leve l of Robustness is directly derived from Level of Concern: the higher
the Level of Concern associated with an environment or system, the higher the Level of
Robustness its security mechanisms much achieve in order to counteract the level risk expressed
as Level of Concern.

There is also a direct correlation between Mission Assurance Category and Levels of Concern
and Robustness. For example, MAC I applications are always considered to have a high Level of
Concern and to require a high Level of Robustness.

The discussion of DID in the GIG Information Assurance Implementation Guide (Assistant
Secretary of Defense for Command, Control, Communications & Intelligence [ASD C3I] DOD
Chief Information Officer [CIO] Memorandum 6-8510) specifies three possible Levels of
Robustness for the security services provided by technical information assurance (IA) solutions:
high, medium, or basic. As noted, Levels of Concern and Levels of Robustness apply not to just
individual IA services, but to entire operating environments in which those services collectively
provide IA. However, for purposes of application security, Level of Concern and Level of
Robustness should be considered both in relation to the overall requirements of the application—
an high Level of Concern application will require a high Level of Robustness in terms of the
quantity and assurance of the countermeasures it provides—and in relation to the requirements
for assurance and functionality of individual security functions performed (or called) by the
application.

For example, in a low Level of Concern environment, the application will need to have only a
low Level of Robustness—in practical terms, this means that its security mechanisms can have a
low level of assurance, and that certain mechanisms may not even be required. In terms of
specific mechanisms, this may mean that Web client application may not need to invoke SSL to
encrypt an HTML form before transmitting it over a network to the Web server application; in a
medium Level of Concern environment, the application may need to invoke SSL encryption of
HTML forms, but the network itself may not be. In a high Level of Concern environment, it may
be necessary to use Type 1 encryption to encrypt the network over which the application must
transmit the SSL-encrypted HTML form..

The definitions of each Level of Concern and Level of Robustness from the GIG IA document
are listed in Table 3-3.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 19

Table 3-3. Levels of Concern and Levels of Robustness

Level Level of Concern Definition Level of Requirement Definition Mission
Assurance
Category

High Information requires the most
stringent protection measures and
rigorous countermeasures

Security services and mechanisms provide the
most stringent protection measures and
rigorous countermeasures

I or II

Medium Information requires layering of
additional safeguards above the DOD
minimum (basic) standard safeguards

Security services and mechanisms provide for
layering of additional safeguards above the
DOD-defined minimum (“basic”) standard of
safeguards

II

Basic Information requires implementation
of DOD-defined minimum standard
of safeguards

Security services and mechanisms equate to
good commercial practices

III

Appendix E of the Information Assurance Technical Framework (IATF) Version 3.0, a
document explicitly called out by the GIG Policy (DOD CIO Memo 6-8510), should be used as a
reference document when determining which Office of the Secretary of Defense (OSD)-defined
Robustness Level to be associated with a particular environment/system. Section 4.5 of the IATF
defines the specific cryptographic technologies, key lengths, etc. that should be employed at each
Robustness Level. For applications that incorporate or invoke encryption, this guidance should
be useful when defining the requirements (in terms of overall assurance and specific
implementation details) of the cryptographic solution to be used by the application.

3.3.4 Strength of Cryptography

In practical terms, cryptography is likely to be used to implement some if not all of the
application’s security services. DOD policy and NIST Federal Information Processing Standards
(FIPS) provide extensive direction that should help developers determine the specific
characteristics of the cryptographic technology that should be used to implement these
application security services.

As with other security mechanisms, the characteristics of cryptography are determined, to a great
extent, by their required Level of Robustness which is also expressed as a Strength of
Mechanism Level (SML), and may also be expressed in terms of a Common Criteria Evaluation
Assurance Level (EAL). IATF Release 3.0 Section 4-5 and Appendix E are good sources of
guidance for determining the SML and EAL that a cryptographic solution should have, given the
required Level of Robustness indicated by the application’s Level of Concern. Some DOD
applications’ Level of Robustness may allow them to use National Institute of Standards and
Technology (NIST)-approved (vs. National Security Agency (NSA)-approved) cryptographic
technologies, as described in FIPS 140-1 and 140-2, “Cryptographic Module Validation Lists,”
and Computer Systems Laboratory (CSL) Bulletin FIPS 140-1, “A Framework for Cryptographic
Standards.” These documents delineate the characteristics of four increasingly secure levels of
cryptographic technologies, and provide a good basis for determining the appropriate SML and
EAL of NIST-approved cryptographic technology to be used in candidate applications. These
determinations should be made based on the results of a thorough and accurate risk assessment.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 20

The reason it is important for application developers to understand the various requirements for
cryptography, even if they plan to provide only APIs to DOD PKI or another DOD-approved
cryptographic technology, is that this understanding will help ensure that their applications are
not implemented in a way that could preclude ‘ the application’s ability to accommodate planned
DOD migrations to more robust, or simply different, cryptographic technologies.

The sensitivity/classification of information, and the protection provided by the network over
which that information will be transmitted, are also important factors in determining the
necessary Level of Robustness of the cryptographic implementation—and specifically the
cryptographic certificates—to be used to protect the information. DOD PKI Policy indicates the
certificate class to be used for classified data (in all Mission Assurance Categories), unclassified
data in MAC I, and unclassified data in MAC II and MAC III. The relevant NSA and NIST
policies indicate other cryptographic strength characteristics to be considered, such as key
lengths, algorithms, and standards to be used in conjunction with data at different
sensitivity/classification levels.

3.3.5 X.509 Certificate Assurance Levels

The X.509 Certificate Policy for the United States Department of Defense, Version 6.0 (31 May
2002) provides clear guidance on the assurance levels of X.509 certificates to be used in DOD
systems (defined in Section 1.3.4.6 of the Policy). This guidance is further clarified in
Department of Defense (DOD) Class 3 Public Key Infrastructure (PKI) Public Key-Enabled
Application Requirements (13 July 2000), Section 3.2, “PKI Assurance Levels”.

The assurance level of a certificate is expressed in terms of the certificate’s class. ASD C3I
Memorandum, Department of Defense (DOD) Public Key Infrastructure (PKI) 12 August 2000
(known as the DOD PKI Policy) provides direction on determining the appropriate level of
assurance for DOD PKI certificates used in DOD systems (page 2 of the DOD PKI Policy,
“Selection of Appropriate DOD PKI Certificate Assurance Levels”). (COMMENT: Simplify last
sentence.)

The X.509 Certificate Policy, while consistent with the DOD PKI Policy, is not limited to DOD
PKI certificates, and is intended to apply to all types of certificates used in DOD systems,
including the FORTEZZA® certificates used in the Defense Message System (DMS). The
guidance in the X.509 Certificate Policy defines the assurance level (class) of certificate that
should be used given the combination of the Value of the Information (defined in Section 1.3.4.3
of the X.509 Certificate Policy; to some extent comparable with Mission Assurance Category) to
be protected, and the Level of Protection of the Network Environment (defined in Section 1.3.4.5
of the X.509 Certificate Policy; to some extent comparable to Level of Robustness) in which that
information will be used. Guidance for General Usage of DOD Certificates appears in Section
1.3.4.6, with a Summary of that General Usage guidance in Section 1.3.4.7.

The information in Section 1.3.4 of the X.509 Certificate Policy implies that the combinations of
Value of Information and Protection Level of Network Environment can be expressed more
simply in terms of Mission Assurance Category.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 21

4. APPLICATION SECURITY REQUIREMENTS

Section 4 provides application security requirements grouped into the security service categories
described in Section 3.2, as well as requirements in areas not specific to a particular security
service, such as application interaction with the host environment, general use of cryptography,
design and coding, and preparation for deployment. The requirements in Section 4 are not meant
to provide an exhaustive set of security requirements for all applications, but instead present a
minimum set of requirements that should be satisfied by the majority of applications—noting
that certain requirements will be applicable only for to certain types of applications, as indicated
in the “Assumptions and Constraints” entries for certain requirements throughout the tables in
Section 4.

These application security requirements are presented in a series of tables, provided within the
subsections of Section 4. Each table lists and provides information on requirements pertaining to
a particular application security objective or a security service to be performed by the
application. These subsections and their tables include:

• Subsection 4.3, Application Interaction with Underlying Host: Defines how the
application should securely interact with its underlying host environment.

• Subsection 4.4, General Use of Cryptography: Defines how the application should use
cryptography in general (vs. cryptography to implement a particular security service).

• Subsection 4. 5, Design and Coding: Defines requirements for the application’s design
and coding to ensure its security.

• Subsection 4.6, Identification and Authentication (I&A): Defines how the application
should implement I&A of users and processes.

• Subsection 4.7, Authorization and Session Control: Defines how the application should
implement authorization of users and processes.

• Subsection 4.8, Access Control: Defines how the application should implement access
control on its resources.

• Subsection 4.9, Confidentiality: Defines how the application should ensure the
confidentiality of the data it handles and uses.

• Subsection 4.10, Integrity: Defines how the application should ensure the integrity of the
data it handles, and of its own operation and data.

• Subsection 4.11, Availability: Defines how the application should ensure the availability
of the data it handles, and of its own resources and operation.

• Subsection 4.12, Accountability: Defines how the application should ensure the
accountability of its users.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 22

• Subsection 4.13, Non-Repudiation: Defines how the application should ensure non-
repudiation of actions performed by its users.

• Subsection 4.14, Preparation for Deployment: Defines how to correctly prepare the
application for installation and deployment.

Each of the requirements in these subsections includes the following information associated with
the requirement:

• Requirement: A number assigned to the requirement, for cross-referencing purposes, and
the brief text description of the requirement

• Description: More extensive, detailed information about what the requirement entails.

• Assumptions and Constraints: Any limiting assumptions that must be true for the
requirement to be relevant and valid. Not all requirements will have assumptions or
constraints associated with them, in which case they should be considered valid for all
applications.

• Test Objective: The verification(s) to perform on an application to ensure that the
requirement has been met.

• Vulnerability Addressed: Any of the top application vulnerabilities (listed in Section
3.1.1) that are addressed by the requirement. Not all requirements directly address any of
these vulnerabilities. In some cases, requirements may only indirectly address one of the
listed vulnerabilities. For requirements that only indirectly address a vulnerability, the
vulnerability’s number will be enclosed in parentheses in this column. For requirements
that are driven by important factors (e.g., policy, best practices) but which do not address
one of the listed vulnerabilities (directly or indirectly), there will be no cross reference in
this column.

• Policy Source: Any policy, directive, manual, memorandum, or other official
document(s) from which the requirement was derived. The numbers provided in this
column are cross-references to the numbers assigned to the policy documents listed in
Appendix B, “List of References”. In the cases of requirements that are derived from best
practices rather than documented policy, the entry in this column will indicate “BP”
(“Best Practice”).

• Note: Any other significant information related to the requirement. The “Note” column
also includes cross-references to the comparable requirement(s) in Recommended
Standard Application Security Requirements Version 1.1, to assist users in comparing the
previous and current versions of this document. This cross reference is preceded by the
text “V1.1:” followed by the relevant requirement number(s) from Section 4 of Version
1.1 of this document. Cross-references in italics point to Version 1.1 requirements that
are partially addressed by the current requirement. Requirements in the current version
for which there are no Version 1.1 cross-references should be considered new
requirements vis à vis Version 1.1.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 23

4.1 Assistance for Implementing these Requirements

The Application Security Developer’s Guide contains extensive technical guidance on how to
implement applications to satisfy all of the requirements in this document. In Section 2 of the
Developer’s Guide is a lookup table in which each requirement listed in Recommended
Application Security Requirements is cross referenced to the Developer’s Guide paragraph(s)
addressing that requirement.

4.2 Exclusions from this Document

With the exception of some requirements pertaining to the use of HTML in Web applications,
this document does not address requirements that pertain only to a specific programming
language. For guidance on the secure implementation of applications in specific programming
languages, please refer to the Application Security Developer’s Guide.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 24

4.3 Application Interaction with Underlying Host

This subsection lists requirements governing how the application interacts with its underlying host environment. The host environment, in this
context, comprises the hardware platform and operating system, plus any “application environment” software, such as a database management
system (DBMS) or Web server. These requirements apply to all applications, regardless of what security functions they perform.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.1.1: No bypass
of security
controls

The application must prevent users from bypassing
any application security controls in an attempt to
directly access any underlying operating system,
subsystem, or middleware component (i.e., PKI
component, DBMS, Web server, etc.).

 Verify that users cannot bypass application security
controls to directly access underlying system
components.

V3 BP V1.1: 4.0.1

4.1.2: Integrity of
host security data

The application must not perform, and must not be
able to be used to perform, any function that may
change the security configuration, security files, or
security programs of the operating environment or
platform in which the application runs.

 Verify that the application does not modify, or enable
modification of, security of its operating environment
or platform.

V2, V3 BP V1.1: 4.0.2

4.1.3: Integrity of
system resources

(1) The application must not undermine or
substitute the functionality or purpose of any files or
programs —including security files and programs —
belonging to an underlying operating system,
subsystem or middleware component (i.e., PKI
component, DBMS, Web server, etc.). (2) The
application must not modify any files, programs or
data—including security files, programs, or data—
belonging to an underlying operating system,
subsystem or middleware component (i.e., PKI
component, DBMS, Web server, etc.).

 (1) Verify that the application does not undermine or
substitute operation of underlying system
components’ files or programs. (2) Verify that the
application does not modify any underlying system
components’ security files, programs, or data.

V2 BP V1.1: 4.0.3

4.1.4: Integrity of
other
applications’
resources

The application must not modify in any
unauthorized way any files, programs, or data
belonging to other applications.

 Verify that the application does not perform any
unauthorized modifications of files, programs, or data
belonging to other applications or underlying system
components.

V2 BP V1.1: 4.0.5

4.1.5: No
compromising
RPCs

(1) The application’s remote procedure calls (RPCs)
to a database or to another program (including
application, DBMS, and system-level programs)
must not modify in any unauthorized way any of the
data, files, or programs belonging to the remote
database or program. (2) The application’s RPCs
must not be used to modify files, programs, or data
belonging to other applications or to any underlying
system components (i.e., operating system, DBMS,
Web server), or to achieve any other unauthorized
action.

 (1) Verify that the application that is using an
external procedure call to access another program or
a database remotely does not modify any security
files, programs, or data associated with that program
or database in any unauthorized way. (2) Verify t hat
the application’s remote procedure calls do not cause
any unauthorized modification of files, programs, or
data belonging to other applications or underlying
system components.

V2 BP V1.1: 4.0.4, 5.0.1, 5.0.2

4.1.6:
Independent self-
protection

The application design and implementation must not
depend entirely on the presence of host or
infrastructure security mechanisms to ensure that
the application and its data are protected from
compromise or denial of service.

 Verify that the application contains, at a minimum,
the error/exception handling functionality it requires
to ensure it cannot be successfully targeted in a denial
of service attack or compromise attack against its
executables and the files it uses.

V3 29 (3.2.15.1)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 25

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.1.7: Operating
environment
verification

The application must be able to verify that its
operating environment is properly configured and
must report any deficiencies in that environment.
This verification should include application
identification of all conditions and dependencies the
application needs to securely perform its functions.
Specifically, the application must identify its
dependencies on: (1) its host computer system (e.g.,
processor, primary and secondary memory capacity,
2) the underlying operating system (e.g. Version and
release numbers, 3) subsystems (e.g., cryptography
toolkits, 4) peripherals (e.g., network connection
and speed, card readers, hardware tokens, 5)
middleware (e.g., DBMS, Web server).

 Verify that the application can recognize the correct
operating state of its host environment and
subsystems on which it relies, and that it does not
proceed with execution if it detects that the host
operating state is incorrect.

(V23) 16 (4.4)

4.1.8: Secure
configuration

(1) The application must be capable of being
configured—preferably through automatic
configuration—for secure operation in its intended
environment(s), and must report any deficiencies
that preclude its complete configuration. (2) The
application’s underlying host—including operating
system, subsystems, and middleware—must be
configured in compliance with all relevant STIGs.
In addition, if there is a relevant STIG for the
application itself, the application must be configured
in compliance with that STIG.

 Verify that the application includes an automatic
installation/configuration utility that configures the
application in a way that the default configuration
options selected by the configuration utility are
always the most restrictive (in terms of security)
possible. Run COPS and other DISA FSO designated
assessment tools and scripts to ensure that the
application and its host are configured according to
the relevant STIGs.

V29 2a (ECSC-1),
2b (ECSC-1),
2c (ECSC-1);
16 (4.4)

If an automated configuration
process cannot be implemented
in the application, easy manual
configuration procedures must
be documented, and
administrators and users must
be trained in how to perform
these procedures.

4.1.9: Detection
of external
failures

The application must be able to detect failure
conditions in the underlying host and surrounding
infrastructure components with which it interfaces.

 Verify that the application, throughout its execution,
continues to detect the state of its host environment,
and that it shuts down in an orderly fashion when it
detects a failure in that environment. Verify also that
the application, if it detects a failure, in an external
infrastructure component (e.g., a cryptographic
component), terminates its attempt to access that
component, and terminates the function it was
performing that required use of that component.

V23, (V15) 29 (3.2.4.1)

4.4 General Use of Cryptography

This subsection lists requirements pertaining to the application’s use of cryptography (including but not limited to public key cryptography),
regardless of the purpose to which that cryptography is being put. This section does not include requirements that pertain only to a specific usage of
cryptography, such as application invocation of a PKI for identification and authentication (I&A) of users, or application use of encryption to achieve
confidentiality of data. Usage-specific cryptography-related application requirements are included in the following sections that pertain to security
service implementations.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 26

An application may invoke cryptographic functions via trustworthy calls to an external cryptographic mechanism—for example, a PKI or an
encrypting file system—only if that external mechanism uses an approved cryptographic technology appropriate to the application function for which
cryptography is being used (e.g., NSA Type 1, 3-DES, or AES implementations for Confidentiality; DOD PKI for I&A and Authorization).

Refer to section 4.3.3 of Department of Defense (DOD) Class 3 Public Key Infrastructure (PKI) Public Key-Enabled Application Requirements (13
July 2000) for a summary of the algorithms approved for particular cryptographic functions in FIPS 140-1 and in DOD PKI implementations.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.2.1:
Interoperability
with DOD PKI

(1) Application PKI functions must be implemented
by a PKI technology that is interoperable with the
DOD PKI. (2) COTS application components that
use or require PKI components must implement a
PKI technology that is interoperable with the DOD
PKI.

 (1) Verify that the application has been PK-enabled
using a PKI technology that is interoperable with
DOD PKI. (2) Verify t hat the COTS component has
received a certification of its interoperability with the
DOD PKI from NSA, DTIC or another appropriate
organization.

V3 4 (4.3 -4.4); 29
(3.2.20)

V1.1: 4.0.6, 5.0.3

4.2.2: Class 4
certificates

The application must accommodate the transition
from DOD PKI Class 3 certificates to Class 4
certificates with minimal modification of
application code.

Application has already
been PK-enabled, or is a
legacy Mission
Assurance Category 1
application in an
unclassified
environment and
needs/uses DOD PKI
cryptography

Verify that the application will accommodate use of
Class 4 certificates with minimal modification of
application code.

(V1, V23,
V24)

3 (DOD PKI
Certificate
Assurance
Levels;
Evolution of
DOD
Certificates)

V1.1: 4.0.7

4.2.3:
Applications to be
PKE’d

The following application types must be PK-
enabled by the deadlines specified in DOD PKE
Policy to provide (at a minimum, unless otherwise
noted) I&A, encryption, and digital signature
functions that interoperate with the DOD PKI: (1)
Unclassified private Web servers, including those
that provide non -sensitive public releasable
information; (1) All email applications; (2) Mission
Assurance Category 1 applications operating on
unclassified networks (exception: DMS High Grade
Systems until DOD PKI is capable of satisfying
High Grade System requirements); (3) Web
applications (clients and servers) that run on
unclassified networks; (4) Web client/browser
applications on classified networks (for I&A to
private Web servers); (5) All other types of
applications that run on unclassified private DOD
networks unless the unclassified network’s
predominant user community is not required to use
DOD PKI certificates for authentication. Such users
include retirees, dependents, and academia; (6) All
email, Web, and legacy applications (client and
server) in all operating environments by 30
September 2007

Application requires use
of DOD PKI
cryptographic
capabilities

Verify that the application is PK-enabled to provide
I&A, encryption, and digital signature functions
interoperable with the DOD PKI. If not, verify that
the exception has been noted and documented.

(V1, V5, V23) 3 (Web Server
Access Control
via PKI,
Enabling of
Networks and
Applications); 4
(4.2, 4.5, 4.6,
4.7, 4.8); 29
(3.2.21)

V1.1: 4.0.8, 4.7.5

Applications that do not require
use of DOD PKI cryptography
do not need to be PK-enabled.
However, an economic cost-
benefit analysis comparing the
costs of PKE of the application
with whatever non -PKI
alternative is being considered
for providing the same security
functions in the application. As
per DOD PKE policy (4.2.1),
Web server applications that
are unclassified and publicly
accessible, and contain
information to which access
must be limited only in order to
(1) preserve copyright
protections, or (2) facilitate its
own development, or (3) make
access to certain links available
only to certain sites, are exempt
from this requirement.
(COMMENT: This note is not
clear.)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 27

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.2.4: Approval of
cryptography

Cryptographic modules and other cryptographic
technology (including key lengths, algorithm,
certificate class, and token type) used by the
application in connection with I&A, access control,
confidentiality, integrity, or non-repudiation must
be: (1) Certified by NIST as compliant with Federal
Information Processing Standard (FIPS) 140 Level
1; (2) Approved by NSA if the Application is a
MAC I application, or by NSA or NIST if the
application is a MAC II application.

 Verify that the application uses appropriately
approved (NIST FIPS 140-1 certified or NSA -
certified) cryptographic technology.

(V5, V24) 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1);
16 (4.2.2); 29
(3.2.19.2)

V1.1: 4.0.9

4.2.5: SSL 3.0 and
TLS 3.1

Web servers and browsers used in DOD
applications should be fully compliant with the SSL
3.0 and TLS (SSL 3.1) specifications.

Application is a Web
application

Verify that any web servers and browsers in use are
fully compliant/compatibl e with the SSL 3.0 and TLS
specifications.

V1, V5 29 (3.2.17.8)

4.2.6: Client
support for tokens

The application must support the DOD Common
Access Card (CAC) and/or FORTEZZA card, as
appropriate for the PKI used by the application.

Application is a client
application (e.g.,
browser, user agent) that
has been PK-enabled.
No waiver has been
granted allowing use of
software certificates.

Verify that the application supports the use of DOD
CAC/ FORTEZZA cards. If not, verify that an
exception waiver has been granted for the use of
software certificates.

(V1, V23) 3 (Enabling of
Networks and
Applications)

V1.1: 4.1.14

4.2.7: Certificate
validation and
revocation

The application must ensure that certificate
validation and certificate revocation are performed
correctly, and must not continue to use or accept
invalid or revoked certificates.

Application invokes a
PKI.

Verify that the invoked PKI responds correctly to
CRLs, and does not honor revoked certificates.

V23 2d (ECRC-1),
2e (ECRC-1); 4
(4.4); 16
(4.3.2.4)

V1.1: 4.4.21

4.2.8: Cryptokey
recovery

The encryption facility invoked by the application
must perform the key recovery processes required
by the cryptographic implementation.

Application uses
cryptography

Verify that the invoked encryption facility operates in
accordance with cryptokey recovery requirements.

V23 4 (4.4); 16
(4.3.1.4)

V1.1: 4.5.10

4.2.9: Key
management,
MAC I and MAC
II

The application must use an NSA -approved
cryptographic module to ensure that all key
management functions associated with the
application’s use of cryptography are performed
correctly. For asymmetric key management, the
cryptographic module must use DOD PKI Class 3
or 4 Certificates stored on a hardware security token
to distribute, store, and control generated keys.

Application uses
cryptography.
Application is MAC I or
MAC II.

Verify that the key management functionality relied
on by the MAC I or MAC II application has been
implemented using NSA -approved cryptography.

V23 2a (IAKM-2),
2b (IAKM-2),
2d (IAKM-3);
16 (4.3.1)

Key management functions
include: (1) Generating
asymmetric key pairs; (2)
Storing each key pair and
related certificates; (3)
Protecting stored private keys
from compromise or loss; (4)
Storing and protecting
certificates that are trust points;
(5) Escrowing or copying keys
used for encryption for data
recovery; (6) Importing and
exporting key pairs and
possibly related certificates.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 28

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.2.10: Key
management,
MAC III

The application must use a NIST FIPS 140-1
evaluated cryptographic module to ensure that all
key management functions associated with the
application’s use of cryptography are performed
correctly. For asymmetric key management, the
cryptographic module must use DOD PKI Class 3
certificates or pre-placed keying material to
distribute, store, and control generated keys.

Application uses
cryptography.
Application is MAC III

Verify that the key management functionality relied
on by the application has been implemented using
FIPS 140-1 evaluated cryptography.

V23 2c (IAKM-1);
16 (4.3.1)

Key management functions
include: (1) Generating
asymmetric key pairs; (2)
Storing each key pair and
related certificates; (3)
Protecting stored private keys
from compromise or loss; (4)
Storing and protecting
certificates that are trust points;
(5) Escrowing or copying keys
used for encryption for data
recovery; (6) Importing and
exporting key pairs and
possibly related certificates.

4.2.11: Interface
to D OD PKI

The application must use Lightweight Directory
Access Protocol (LDAP), Hypertext Transmission
Protocol, or Hypertext Transmission Protocol over
SSL (HTTPS) when communicating with the DOD
PKI.

Application uses DOD
PKI

Verify that the interface used by the application to
access DOD PKI components is LDAP, and that all
accesses of DOD PKI components by the application
are made via SSL-encrypted connections.

V23 BP To determine which interface
protocol to use, see Department
of Defense Class 3 Public K ey
Infrastructure Interface
Specification (Draft, 13 January
2000).

4.2.12: Design
supports PKI use

The application’s design should not preclude it
being configured or modified to use DOD PKI, and
it should be able to use DOD PKI with only minor
changes t o its configuration or code.

 Verify that the application has not been hard-coded in
some way that will preclude it being configured or
modified with minimal effort to interoperate with the
DOD PKI.

V23 16 (4.4); 3
(Enabling of
Networks and
Applications)

V1.1: 4.0.6, 5.0.3

4.2.13: DOD PKI
certificates only

The application must be configurable to use only
DOD PKI certificates, and to prevent use of any
other type of certificate.

Application uses DOD
PKI

Verify that the certificate validation capability relied
upon by the application is able to distinguish between
DOD PKI certificates and certificates originating
elsewhere, and that it rejects any non -DOD PKI
certificates.

V23 16 (4.4)

4.5 Design and Coding

This subsection lists requirements regarding the correct design and coding of secure application software. These requirements apply to all
applications (within the constraints defined in the Assumptions and Constraints for a given requirement), regardless of what security functions the
application performs. Note that many of the following requirements are best practices for secure programming that are intended to ensure that the
application program will operate as expected.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.1: High -risk
services

Avoid use of high-risk services and technologies,
such as Telnet, Simple Network Mail Protocol
(SNMP), mobile code, etc; in/by applications unless
absolutely necessary.

 Verify that the application u ses no high -risk services,
or that if the application does use a high -risk service,
verify that a countermeasure, such as a security
wrapper, has been implemented for the service to
minimize the potential threat it poses.

V31 BP V1.1: 4.0.10

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 29

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.2: One entry
point and exit
point

Every application process, including all security
processes, should have only one entry point and one
exit point.

 Verify proper entry and exit points for each
application process during the application
development planning stage and maintain throughout
application development cycle. After application
development, verify application entry and exit points
properly implemented and functional by conducting a
3rd party source code review.

V3, V28 BP

4.3.3: Only
invoked functions

The application should not include any functions
that are not expressly invoked during application
operation.

 Verify that functions not explicitly invoked during
application operation were removed/excluded during
the application development cycle. After application
development, verify functions not explicitly invoked
during application operation were removed/excluded
by conducting a 3rd party source code review.

V25 BP

4.3.4: Only called
runtime objects

The application runtime environment should
exclude any software libraries, routines, or other
resources that are not explicitly called by the
application.

 Verify that any runtime objects not explicitly called
by the application were excluded/ removed during the
application development cycle. After application
development, verify runtime objects not explicitly
called by the application were removed by
conducting a 3rd party source code review.

V25 BP

4.3.5: Least
privilege

Each application process should have only the
absolute minimum of privileges assigned to it that it
requires to access the data or call the processes it
needs.

 Verify that least privileges were assigned to each
application process during the application
development planning stage and development cycle.
After application development, verify least privilege
assignment was properly implemented and functional
by conducting 3rd party source code review.

V26 29 (3.2.15.3)

4.3.6: Single
tasking on single
processors

Applications that run on single-processor hosts
should be single-tasking, i.e., should execute only
one task at a time, and should not initiate a new task
until the previous task has completed execution.

 Verify that the application is single tasked when used
on single processor hosts. Verify that this
requirement was designed into the application
development planning stage and maintained
throughout application development cycle. After
application development, verify single tasking on
single processor hosts properly implemented and
functional by conducting 3rd party source code
review.

V27 BP

4.3.7: Avoid
multitasking
conflicts

In applications for multiprocessor hosts,
multitasking or multithreading, must not create
conflicts in usage of system resources (e.g., memory
or disk addresses); all tasks and threads should be
synchronized to prevent such conflicts.

 Verify that multitasking conflicts are avoided on
multiprocessor hosts. Verify that this requirement
was designed into the application development
planning stage and maintained throughout application
development cycle. After application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V27 BP

4.3.8: Small,
simple modules

The application should consist of multiple small,
simple, single-function modules instead of one
large, complex module that performs multiple
functions.

 Verify that small, simple, single function modules
were designed into the application during its
development planning stage and development cycle.
After application development, verify that small,
simple, single function modules were properly
implemented and functional by conducting 3rd party
source code review.

V28 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 30

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.9: Self-
contained
modules

Each application module should be designed to be
self-contained and atomic, so any module can be
disabled when not needed or if found to be
vulnerable or errored without affecting the operation
of any other modules.

 Verify that self-contained modules were designed
into the application during its development planning
stage and development cycle. After application
development, verify that self-contained modules were
properly implemented and functional by conducting
3rd party source code review.

V3 BP

4.3.10: Minimal
trusted modules

The application should contain very few trusted
modules; the only modules that are trusted should
perform critical security control-related operations,
such as I&A, auditing, access control, etc.

 Verify that minimal-trusted modules and trusted
modules only perform critical security control related
operations. Verify that this requirement was designed
into the application development planning stage and
maintained throughout application development
cycle. After application development, verify minimal
trusted modules with trusted modules that only
perform critical security control related operations
were properly implemented and functional by
conducting 3rd party source code review.

V26 BP

4.3.11: Untrusted
module
limitations

Untrusted application modules should be unable to
access security data, functions, or privileges.

 Verify that untrusted modules are designed with
appropriate security limitations during the application
development planning cycle. After application
development, verify untrusted module limitations by
conducting 3rd party source code review.

V2 BP

4.3.12: No user
interface bypass

The application should be designed to prevent users
from bypassing any user interface software to
directly access application data or processes.

 Verify that users are unable to bypass the application
interface. Verify that this requirement was d esigned
into the application development planning stage and
maintained throughout application development
cycle. After application development, verify
prevention of user interface bypass was properly
implemented and functional by conducting 3rd party
source code review.

V3 BP

4.3.13: Separate
data and programs

The application should write any files it creates to a
different directory from that in which the
application executable code is stored.

 Verify that the application was designed to separate
data and program directories. Verify that this
requirement was designed into the application
development planning stage and maintained
throughout application development cycle. After
application development, verify separate data and
program directories are properly implemented and
functional by testing and conducting source code
review.

V29 2a (DCPA-1),
2b (DCPA-1);
BP

4.3.14: NIAP -
certified
components

All third-party (COTS, GOTS, or Open Source)
components used in the application to perform
security functions must be NIAP-certified at the
level of assurance and robustness that is appropriate
for the classification of the data handled by the
application (and of the network on which that
application will transmit the data), unless a written
waiver is granted allowing their use without NIAP
certification (or allowing an alternative
certification).

No waiver has been
granted waiving this
requirement.

Verify that all third -party components used in the
application to perform security functions appear on
the NSA’s Co mmon Criteria Evaluated Products List
found at:
http://www.radium.ncsc.mil/tpep/epl/cc_st.html.

V30 1 (4.17, 4.19);
2a (DCPD-1),
2b (DCPD-1),
2c (DCPD-1),
2d (DCAS-1),
2e (DCAS-1),
2f (DCAS-1)

4.3.15: No
collection of user-
identifying data

The application must not use cookies or any other
Web technology that collects user-identifying
information such as extensive lists of previously
visited sites, email addresses, or other information
to identify or build profiles on individual users.

Application is a Web
server application used
for a publicly -accessible
Website

Verify that the web server application does not
collect any user-identifying data.

V15, V19,
(V2, V5)

BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 31

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.16: Avoid
persistent cookies

The application must not use persistent cookies to
collect non -identifying information about users
unless the following is true: (1) The Website issues
a clear and conspicuous notice that cookies are
being used to collect data about users, the reason
why they are being used, and the type of
information that is being collected. (2) There is a
compelling need for the site to gather such data. (3)
The Web server has implemented appropriate and
publicly disclosed privacy safeguards for handling
information derived from cookies. (4) The Secretary
of Defense has approved in writing the use of the
data-collecting persistent cookies.

Application is a Web
server application used
for a publicly -accessible
Website

Verify that, if using persistent cookies, the
application: (1) Issues a clear and conspicuous notice
that cookies are being used to collect data; (2) Has a
compelling need for the site to gather such data; (3)
Has implemented appropriate and publicly disclosed
privacy safeguards for handling information derived
from cookies; (4) Has been approved, in writing, by
the Secretary of Defense to use data-collecting
persistent cookies.

V15, V19,
(V2, V5)

BP

4.3.17: Invocation
of trusted
processes

Trusted application processes must not be allowed
to be invoked by end -users or user-controlled
processes.

 Verify that the application properly invokes trusted
processes. Verify that this requirement was designed
into the application development planning stage and
maintained throughout application development
cycle. After application development, verify
invocation of trusted processes properly implemented
and functional by conducting 3rd party source code
review.

V3, (V31) BP

4.3.18: No
security through
obscurity

DOD applications should not rely on “security
through obscurity”. Java applications should not be
implemented using bytecode obfuscation.

 Verify bytecode obfuscation is not part of the
planned security implementation for a Java
application. Verify that this requirement was
designed into the application development planning
stage and maintained throughout application
development cycle. After application development,
verify bytecode obfuscation was not implemented by
conducting 3rd party source code review.

(V2, V28) BP

4.3.19: Coding for
operational
environment

Application code should be designed and written to
operate under the constraints of the operational host
(i.e., after STIG configuration) and infrastructure.
Applications should not expect to use u navailable
services, to be granted unauthorized permissions, or
to run without operational security constraints.

 Verify application code was written to meet the
constraints of the operational host environment.
Verify that waivers to use unavailable services or
grant unauthorized permissions are not needed.

(V3, V23,
V25, V26,
V29, V31)

BP

4.3.20: No trusted
programs
invoking
untrusted
programs

The application must contain no trusted programs
that invoke untrusted programs.

Application contains
third-party component(s)

Verify no invocation of untrusted programs by
trusted programs. Verify that this requirement was
designed into the application development planning
stage and maintained throughout application
development cycle. After application development,
verify no invocation of untrusted programs by trusted
programs through conduction of 3rd party source
code review.

V3, (V26) BP

4.3.21: No GoTo
statements

Application code should not include GoTo
statements that obscure the control flows within the
program

 Verify that “GoTo” statements are not used within
application code, during the application development
cycle. After application development, verify that
“GoTo” statements were not used by conducting 3rd
party source code review.

V28 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 32

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.22: No
unnecessary
software

The application code base should not include any
unnecessary software (custom-developed or third-
party).

 Verify that unnecessary software is not used by the
application. Verify that this requirement was
designed into the application development planning
stage and maintained throughout application
development cycle. After application development,
verify unnecessary software was not used by
conducting 3rd party source code review.

V25 BP

4.3.23: Secure
data types

Applications should use only secure data types (e.g.,
signed rather than unsigned values in C and C++).

 Verify only secure data types are used within the
application by conducting 3rd party source code
review and scanning with the appropriate source code
scanning tools.

V31 BP

4.3.24: Safe
system calls

Applications, regardless of the programming
language in which they are implemented, should use
only safe system calls, i.e., calls that do not make
the application vulnerable to buffer overflows or
other types of attacks.

 Verify that only safe system calls were designed to be
used within the application by conducting 3rd party
source code review and scanning with t he appropriate
source code scanning tools.

V31 BP

4.3.25:
Appropriate APIs

Applications should use only Application
Programmatic Interfaces (APIs) intended for use by
software processes, and not interfaces intended for
use by human users.

 Verify that proper usage of APIs was designed into
the application development cycle. After application
development, verify API usage properly implemented
and functional by conducting a 3rd party source code
review.

V3 BP

4.3.26: No
escapes to shell or
command line

Applications should not include command-line or
shell escape codes.

 Verify that the application contains no command-line
or shell escape codes. Verify that this requirement
was designed into the application development
planning stage and maintained through out application
development cycle. After application development,
verify no command-line or shell escape codes by
conducting 3rd party source code review and
scanning with the appropriate source code scanning
tools.

V31 BP

4.3.27: Avoid
escape codes

Application code should not include escape codes
that invoke system level or device level functions.

 Verify that the application contains no device escape
codes. Verify that this requirement was designed into
the application development planning stage and
maintained throughout application development
cycle. After application development, verify no
device escape codes by conducting 3rd party source
code review and scanning with the appropriate source
code scanning tools.

V31 BP Escape codes in applications
can inadvertently or
intentionally cause denial of
service (e.g., to a device) or
bypass of system security
controls. Examples of escape
codes to be avoided include but
are not limited to: (1) escape
codes that invoke the system
shell or command line; (2)
escape codes in the Hayes
modem command set; (3)
VT100 escape codes.

4.3.28: Current
patches

Applications that include third-party code should
include the absolute latest versions of that code,
with all security patches applied, in accordance with
the IAVA I mplementation Process.

 Verify that all 3rd party code is the latest patched
version. Verify that this requirement was met during
the application development cycle. After application
development, verify all 3rd party code is the latest
patched version by conducting a 3rd party source
code review.

V30 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 33

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.29: Consistent
naming

Aliases, pointers, links, caches, and other objects
named in the application should be named
consistently throughout the program. The
application should use symbolic naming and
dynamic linking, with globally unique names and
symmetrical treatment of aliases.

 Verify that naming conventions are consistently
implemented t hroughout application development
cycle. After application development, verify
consistent naming was properly implemented within
the application by conducting a 3rd party source code
review.

V28 BP

4.3.30: Frequent
cache clearing

Applications should be clear their own caches
frequently.

 Verify that applications are designed to frequently
clear any cache used. Verify that this requirement
was met during the application development cycle.
After application development, verify frequent cache
clearing is properly implemented and functional by
conducting a 3rd party source code review.

(V2) BP

4.3.31:
Asynchronous
consistency

Applications should avoid timing and sequence
errors (including race conditions, incorrect
synchronization, and deadlocks). This should be
achieved by coding all transactions to be atomic,
implementing multiphase commits, and using
hierarchical locking strategies.

 Verify that the application was designed to avoid
timing and sequence errors during the application
development cycle. Aft er application development,
verify asynchronous consistency is properly
implemented and functional by conducting a 3rd
party source code review.

V27 BP

4.3.32: No off-by-
one counting
errors

Applications should not include off-by-one counting
errors.

 Verify that the application does not include any off-
by-one counting errors by conducting a 3rd party
source code review.

(V15) BP

4.3.33: No fixed
buffer sizes

When defining buffer sizes, do not define an
absolute value or constant to fix the buffer size.
Instead, use relative values or do not specify buffer
size constraints at all.

 Verify that the application does not rely on any
absolute values or fixed buffer sizes by conducting a
3rd party source code review.

V7 BP

4.3.34: Do not
omit negations

Applications should not omit necessary negations. Verify that the application does not omit any
necessary negations by conducting a 3rd party source
code review.

(V15) BP

4.3.35: Assign
minimal resources

Each application process should have the absolute
minimum computer resources made available to it
that it needs to operate.

 Verify that the application was designed to have the
absolute minimum of computer resources made
available to each application process. Verify that this
requirement was met during the application
development cycle. After application development,
verify minimal computer resources to application
processes was properly implemented and functional
by conducting a 3rd party source code review.

V27 BP

4.3.36: Results
buffer larger than
source

Buffers used by the application to store results must
always be larger than the source buffers from which
the data that will fill the results buffer originate.
(COMMENT: This might use a little more
explanation.)

 Verify that the application was designed so that its
results buffers are always larger than source buffers.
Verify that this requirement was met during the
application development cycle. After application
development, verify the result buffer is always larger
than the source buffers by conducting a 3rd party
source code review in addition to scanning with the
appropriate source code scanning tools.

V7 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 34

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.37: No
passing of long
data elements

Application library functions must not pass
excessively long data elements into other libraries.
Application functions should reject excessively long
data elements passed to it by third-party library
functions used in the application.

 Verify that the application does not pass long data
elements between libraries. Verify that data elements
defined for the application are as terse as possible.
Verify that this requirement was met during the
application development cycle. After application
development, verify long data elements are not
passed between libraries by conducting a 3rd party
source code review.

V7 BP Third-party software library
routines cannot be trusted not
to cause internal buffer
overflows, even when the
custom-developed code in the
application does not cause
them. It is good programming
practice to avoid coding
custom-developed library
functions that pass long data
elements. Indeed, the best
practice is to define all data
elements handled by the
application to be as terse as
possible.

4.3.38: Do not
trust operating
system variables

The application must not trust operating system
environment variables. Instead, the program should
pass every argument to the application in an
environment parameter.

 Verify that the application does not trust operating
system variables. Verify that this requirement was
met during the application development cycle. After
application development, verify that operating system
variables are not trusted by conducting a 3rd party
source code review.

V29, (V8) BP

4.3.39 Read only
database front-
ends

The database front-end functionality should allow
only query (read) access, and no update (write) or
delete access.

Application is a Web-
based front-end to a
database

Verify that database front-ends are design ed to be
read only. Verify that this requirement was met
during the application development cycle. After
application development, verify database front-end
read only query was properly implemented and
functional by conducting a 3rd party source code
review.

V2 BP

4.3.40: Discrete
database
transactions

Database updates should be implemented as discrete
transactions.

Application updates a
database:

Verify that the application uses discrete database
transactions. Verify that this requirement was met
during the application development cycle. After
application development, verify requirement by
conducting a 3rd party source code review.

V28 BP

4.3.41: CPU time
allotment

The application should not prevent the developer (or
administrator) from configuring a maximum limit
on the amount of CPU usage time allotted to any
single application process, and the application must
not grant additional CPU time to any process that
reaches that limit.

 Verify that the application does not interfere with the
configuration of maximum CPU usage time
allotments to individual application processes. Verify
that the application does not override any configured
CPU usage time allotments and grant additional CPU
usage time to processes that have reached their
configured maximum usage time.

V27 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 35

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.42: Category 1
and Category 2
mobile code
signing

The application must digitally sign the mobile code
before releasing it using an NSA - or NIST-approved
PKI code signing certificate to sign the code.

(1) Application is Web
server or other server
application that acts as
the source for Category
1 or Category 2 mobile
code. (2) Responsible
CIO has not signed
written waiver allowing
use of commercial
certificates for signing
Category 1 and Category
2 mobile code. (3)
Responsible CIO has not
signed written waiver
allowing dissemination
of unsigned Category 1
or Category 2 mobile
code.

Verify that the application digitally signs mobile code
before release using appropriately approved PKI code
signing certificate. If this is not the case, verify that
the application that uses commercial certificate to
sign mobile code has received a written waiver from
the responsible CIO allowing use of commercial
certificates. If the application is still not compliant
with the requirement, verify that the application that
does not sign Category 2 mobile code has received a
written waiver from the responsible CIO allowing
mobile code with no digital signature.

V30, V32,
(V2)

2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.1.3, 1.2.4)

V1.1: 4.8.1

The appropriate approver
(NIST or NSA) for the code
signing certificate will be
determined by the Mission
Assurance Category of the
application.

4.3.43: Signed
Category 1 and
Category 2 mobile
code execution

Before executing signed Category 1 or Category 2
mobile code, the application must validate the
digital signature on the mobile code to ensure that
the code originated from a trusted source.

Application is Web or
other client application.
Mobile code has been
received from a trusted
source as proved by
signature on the code

Verify that the application validates digital signature
on mobile code before executing it.

V30, V32,
(V2)

2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.1.3); 16
(4.3.3.1)

V1.1: 4.8.2

4.3.44: Unsigned
Category 2 mobile
code execution

The application shall not execute unsigned Category
2 mobile code unless it is implemented in a way that
ensures that it executes in a constrained
environment (i.e., a “sandbox”) without access to
local OS and network resources (e.g., file system,
Windows registry, and network connections other
than to its originating host).

Application is Web or
other client application.
Mobile code has been
received from an
untrusted source and is
not signed

Verify that Category 2 mobile code executes with no
access to local OS and network resources (except for
network connections to code’s originating host).

V2, V30, V32 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.2.3-4)

V1.1: 4.8.3

4.3.45: Category 2
mobile code
notification

The application must be configurable to warn users
when the application is about to execute Category 2
mobile code.

Application is Web or
other client application

Verify that the application can be configured to issue
warning to user when application is about to execute
Category 2 mobile code.

V30, V32,
(V2)

2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.2.4)

V1.1: 4.8.4

4.3.46: Category 3
mobile code
handling

The application may act as a source for, or may
execute, Category 3 mobile code after a risk
assessment has been performed, and appropriate risk
mitigation has been undertaken.

 Verify that appropriate risk management is being
performed for application that uses Category 3
mobile code.

V30, V32 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.3.4)

V1.1: 4.8.5

4.3.47: No
“emerging”
mobile code

The application must not act as a source for, or
execute, emerging mobile code technology.

Written waiver has not
been granted to CIO (as
per [5 (1.4.3)]) allowing
use of emerging mobile
code technology

Verify that the application’s “emerging mobile code
technology” has received the necessary waiver.

V30, V32,
(V2)

2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.4.2)

V1.1: 4.8.6

4.3.48: Mobile
code in email

The application must disable/prevent (or interface in
trustworthy way with another program that can
disable) the execution of mobile code in message
bodies or attachments.

 Verify that email client disables/prevents execution
of mobile code in message bodies and attachments.

V9, V32 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(2.1); 27
(6.6.4.5)

V1.1: 4.8.7

4.3.49: Email
client mobile code
notification

The application must be configurable to issue a
warning to the user, before opening an email
attachment, that the attachment about to be opened
may contain mobile code.

 Verify that the email client can be configured to
notify user, before opening email attachment, that
attachment may contain mobile code.

V30, V32 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(2.2)

V1.1: 4.8.8

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 36

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.50:
Sandboxing of
mobile code

The application must provide a “sandbox”
mechanism and ensure that the mobile code can
execute only with in that sandbox.

 Verify that the application is designed to sandbox
mobile code. Verify that this requirement was met
during the application development cycle. After
application development, verify proper
implementation and functionality of sandboxing by
conducting a 3rd party source code review.

V2, V30, V32 29 (3.2.5.13)

4.3.51: Disabling
of unsigned
mobile code

The application must be able to disable operation of
unsigned Category 1 mobile code.

 Verify an application’s exemption from meeting
mobile code requirements by determining if the
application utilizes the types of mobile code listed on
the left.

V2, V30, V32 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(1.1.4)

4.3.52:
Unrestricted
mobile code types

The application need not satisfy any of the above
mobile code-related requirements for the following
types of mobile code: (1) Scripts and applets
embedded in or linked to Web pages and executed
in the context of the Web server (e.g., Java servlets,
Java Server Pages, Java RNI, Java Jini, CGI, Active
Server Pages, Cold Fusion Markup Language
(CFML), PHP Hypertext Processor (PHP), Server
Side Include (SSI), server-side JavaScript, and
server-side LotusScript). (2) Local programs and
command scripts (e.g., binary executables, shell
scripts, batch scripts, Windows Scripting Host
[WSH], Perl scripts). (3) Distributed object-oriented
programming systems (e.g., Common Objective
Request Broker Architecture [CORBA], Distributed
Component Object Model [DCOM]). (4) Software
patches, updates, including self-extracting updates
and software updates that must be invoked explicitly
by the user (e.g., Netscape SmartUpdate, Microsoft
Windows Update, and Netscape Web browser plug-
ins).

 Verify the use of any mobile code is of an allowed
type of mobile code. After application development,
verify the use of any mobile code meets the
requirements for allowed types of mobile code by
conducting a 3rd party review.

(V30, V32) 2a (DCMC-1),
2b (DCMC-1),
2c (DCMC)-1; 5
(Attachment 1)

4.3.53: Allowable
mobile code types

The application may contain or execute the
following types of mobile code, but only in
conformance with the mobile code-related
requirements defined in References 4.3.42-4.3.51:
(1) Category 1: ActiveX Windows Scripting Host,
when used to execute mobile code; UNIX shell
scripts, when used as mobile code; DOS batch
scripts, when used as mobile code. (2) Category 2:
Java applets and other Java mobile code; Visual
Basic for Applications (VBA); LotusScript;
PerfectScript; Postscript. (3) Category 3: Javascript
(include Jscript and ECMAScript variants);
VBScript; Portable Document Format (PDF);
Shockwave/Flash. (4) Emerging Mobile Code: Any
mobile code type not listed here.

 Verify that the application digitally signs mobile code
before release using appropriately approved PKI code
signing certificate. If this is not the case, verify that
the application that uses commercial certificate to
sign mobile code has received a written waiver from
the responsible CIO allowing use of commercial
certificates. If the application is still not compliant
with the requirement, that the application that does
not sign Category 2 mobile code has received a
written waiver from the responsible CIO allowing
mobile code with no digital signature.

V2, V30, V32 1 (4.24); 2a
(DCMC-1), 2b
(DCMC-1), 2c
(DCMC)-1; 5
(Attachment 1)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 37

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.3.54: Strictly
controlled remote
administration

Application administration tools that support remote
administration must provide at least the same levels
of assurance, robustness, and protection of
privileged functions and sensitive data as the the
same tools when used on an administration console
direct-connected to the server. Specifically, the
levels of assurance, robustness, and protection must
ensure that the confidentiality and integrity of
administration data transmitted between the tool and
the server application are at least the same if not
greater than they would be were the administration
console direct-connected to the server, and that the
authentication, authorization, and accountability of
the administrator using the tool is no less secure
than it would be were the administrator using the
tool locally, direct-connected to the server.

There is a compelling
operational need for
remoted administration.
Application is a server
application, and includes
administration tools that
can be used to
administer the
application remotely.

Verify that the remote administration tool uses
appropriate security mechanisms such as
cryptography (e.g., SSL with appropriate Class of
X.509 certificates if the tool is browser-based) to
guarantee that the administration session is at least as
secure as it would be were the tool used locally,
direct-connected to the administered server
application.

V37 2d (EBRP -1),
2e (EBRP -1)

Remote performance of
privileged functions in
connection with administration
of applications is strongly
discouraged, permitted only for
compelling operational needs,
and must be strictly controlled.

4.3.55: Secure
programming
language

The programming languages in which the
application is written must not have characteristics
that could create vulnerabilities in the application
unless effective countermeasures in the
application’s design and coding fully counteract
those vulnerabilities.

 Verify that the application does not include languages
that are known to introduce vulnerabilities, such as
untyped languages like PHP and VBScript, or buffer-
overflow prone languages like C or C++. If the
application does i nclude such a language, verify that
the application includes countermeasures that fully
counteract the vulnerabilities created by the language,
e.g., no fixed buffer sizes, effective input validation
and bounds checking to counteract the potential for
buffer overflow.

V39 BP

4.3.56: Dispersion
of security code

The application’s security processes should not be
dispersed throughout the application code, but
should be located close together (ideally
contiguously).

 The application is written in multiple, likely non-
interoperable, programming languages. This
vulnerability must be avoided in the application’s
design. A code review after the application is built
may help locate the application’s security processes,
but if those processes are dispersed throughou t the
code base, little if anything can be done to rectify the
problem so late in the development lifecycle.

V38 BP

4.3.57: No buffer
overflows in
library routines

The application must not call any software libraries
that contain buffer overflow vulnerabilities.

 Verify that the application only uses software
libraries that have been tested for security
vulnerabilities and approved for use.

V7 BP This requirement is particularly
important for library routines in
C or C++.

4.3.58: Functional
Architecture

The application’s design includes a functional
architecture that complies with the requirements in
DODI 8500.2.

 Verify that the design document for the application
includes or is associated with a Functional
Architecture Document, and that this document
complies with the content requirements defined in
DODI 8500.2.

 2a (DCFA-1),
2b (DCFA -1),
2c (DCFA-1)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 38

4.6 Identification and Authentication (I&A)

This subsection lists the security requirements defining how server application processes should perform—or interface with external I&A facilities
that perform on their behalf—identification and authentication of users, client processes, and other servers. An application may invoke an external
I&A mechanism, such as a Single Sign-on system, via trustworthy calls, only if that external I&A mechanism is implemented by an approved
technology. See IATF (Reference 27) Section 4.3.1 for a discussion of the processes and technologies involved in identification and authentication.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.1: User
authentication

Application must ensure that users have been
authenticated before granting them access to
sensitive resources or trusted roles.

 Verify that application ens ures that users have been
authenticated before granting them access to sensitive
resources or trusted roles.

V1 2d (IAIA-2), 2e
(IAIA-2); 16
(4.2.3); 29
(3.2.1, 3.2.17.1)

V1.1: 4.1.1

4.4.2: Process
authentication

Applications must authenticate any process,
program, or other active entity or object that
interacts with the application on a user’s behalf.

 Verify that this authentication requirement was met
during the application development planning stage
and maintained throughout application development
cycle. Post application development cycle, verify
that the requirement was properly implemented by
testing.

V1 BP

4.4.3:
Authentication
warning
notification

Before granting an authenticated user access to the
application’s resources, the application must present
a warning notification message to that user
containing the following information: (1) user has
accessed a government system; (2) extent to which
the application will protect the user’s privacy rights,
(3) highest sensitivity level/classification of data
that may be handled by the application, (4) user’s
actions are subject to audit, (5) user’s
responsibilities for handling sensitive or classified
information when using the application.

 Verify that upon authentication, application presents
required information to the user before granting
access to application resources.

(V2) 1 (4.23); 2d
(ECWM-1), 2e
(ECWM-1), 2f
(ECWM-1); 29
(3.2.1.4.5,
3.2.8.1, 3.2.8.2)

V1.1: 4.1.29

4.4.4: Classified
authentication
warning
notification

In addition to the informa tion in 4.4.3 above, the
application’s warning notification message to
authenticated users must include the following
additional information associated with the
authenticated UserID: (1) date, time, origination
(e.g., client/browser IP address or domain n ame) of
most recent previous login; (2) number of
unsuccessful login attempts by the UserID since the
last successful login.

The application handles
classified information

Verify that upon authentication, application presents
this information in addition t o the information in
4.4.3 to the user before granting access to application
resources.

(V2) V1.1: 4.1.29

4.4.5: I&A
mechanisms

(1) I&A performed before granting access to the
application must use a non-forgeable, non-
replayable mechanism that supports b oth one-way
and two-way authentication. (2) Application I&A
should use one or more of the following
technologies instead of or in addition to
UserID/static password: (a) single sign -on (SSO, 2)
PKI, (b) hardware token (CAC or FORTEZZA, 4)
biometrics, (c) dynamic (one-time) passwords.

 (1) Verify that I&A is performed using a non-
forgeable, non-replayable mechanism that supports
one-way and two -way authentication. (2) Verify that
the application’s I&A process uses SSO, PKE,
hardware token, and/or biometrics.

V1 2a (DCBP -1),
2b (DCBP -1),
2c (DCBP -1),
2d (IAIA-2), 2e
(IAIA-2); 27
(4.5.3.5); 29
(3.2.1.4.4,
3.2.1.8,
3.2.17.1.1)

V1.1: 4.1.2, 4.1.3

4.4.6:
Authentication
chain of trust

For every user session and transaction, the
application must ensure that an authentication chain
of trust is established and maintained between the
client/browser, the application server, and any
backend servers used by the application.

 Verify that the application establishes and maintains
the necessary authentication chain of trust.

V1, V3, V18 BP V1.1: 4.1.4

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 39

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.7: I&A trusted
path

All I&A transactions must be performed over a
trusted path (e.g., encrypted link) between the entity
to be authenticated and the entity performing the
authentication.

 Verify that all I&A transactions conducted by the
application are performed over a trusted path.

V1 29 (3.2.2) V1.1: 4.1.5

4.4.8: Trusted
path initiation

The trusted path used for user I&A must be initiated
by the user, not by the application.

 Verify that the application never attempts to initiate
an I&A trusted path on its own.

V1 29 (3.2.2.2)

4.4.9: I&A data at
rest

The application must ensure that all passwords,
encryption material, and any other sensitive data it
uses in the I&A process are adequately protected
from disclosure or tampering when at rest, and that
the application itself, and the interfaces between the
application and I&A data stored in the file system,
RDBMS, Web server, etc; cannot be exploited to
compromise those data.

 Verify that the application ensures that all sensitive
data are adequately protected at rest.

V2, V3 29 (3.2.1.5.2)

4.4.10: Backend
system I&A

The application must not prevent the backend
system from authenticating users or interfere in any
way with that authentication process.

The application is a
server application that
interfaces with a
“backend” system or
DBMS that requires
users to be authenticated
to it before allowing
them access

Verify that server application through which users
gain access to a backend system enables the backend
system to authenticate users if required.

V1, V3 BP V1.1: 4.1.6

4.4.11: I&A on
behalf of backend
system

The application should use only accredited
authentication portal or single sign-on (SSO)
technology to accomplish I&A on behalf of a
“backend” system or DBMS.

The application is a
server application that
performs user I&A on
behalf of a “backend”
system or DBMS
application.

Verify that server application p erforming I&A on
behalf of a backend application does so using
accredited authentication portal or SSO technology.

V1, V3 BP

4.4.12:
Unsuccessful I&A
attempts

The I&A mechanism must enable administrator
configuration of the maximum number of login
attemp ts (configurable per user or per role) allowed
within a given time period.

 Verify that the I&A mechanism enables the
administrator to configure the maximum number of
unsuccessful login attempts allowed per user and per
role.

V1 29 (3.2.1.6) V1.1: 4.1.7

4.4.13: I&A
lockout period

The application I&A mechanism must enable
administrators to configure the duration of the
“lockout” period during which a user (or role) who
exceeds the number of allowable login attempts will
be prevented from making another I&A attempt.

 Verify that the I&A mechanism enables the
administrator to configure the I&A lockout period for
a user or role.

V1 2d (ECLO-2),
2e (ECLO-1);
29 (3.2.1.6.1)

V1.1: 4.1.8

4.4.14: No roles
without
authentication
credential

The application must not allow any role to be
defined without an associated authentication
credential (e.g., password, if UserID/password I&A
is used; or PKI certificate, if PKI-based I&A is
used).

Application implements
Role Based Access
Control

Verify that the application does not allow a role to be
defined without requiring it have a role-associated
authentication credential assigned to it.

V1 BP V1.1: 5.2.3

4.4.15:
Group/Role I&A

The application must first individually authenticate
every user who claims membership in a group o r
role before performing subsequent group/role level
I&A for that user, and must also authenticate the
group/role based on its group/role authenticator.
This group/role authenticator must be a DOD PKI
certificate unless a waiver has been granted by the
responsible DAA.

Application performs
I&A at the group or role
level.

Verify that the application does not perform group or
role I&A for a user without first authenticating
individual user claiming membership in the group or
role. Verify that the group/role authenticator is a
DOD PKI certificate, or that a waiver has been
granted by the responsible DAA allowing use of
another type of authenticator.

V1 2d (IAGA-1), 2e
(IAGA-1)

V1.1: 4.1.23

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 40

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.16:
Interprocess
authentication

Application processes that act on behalf of users
should be authenticated by the server or peer
process with which they are attempting to
interoperate. The strength of interprocess
authentications should be at least as great as the
strength of user authentications performed by the
same application.

 Verify that any server or peer process interoperations
are authenticated at a level equal to, or greater, the
strength of user authentication performed by the
application.

V1 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1);
29 (3.2.1.7)

4.4.17: Client -
Server
Interprocess I&A

Before accepting a request from any client process,
the application’s server process must authenticate
that client process using an interprocess
authentication technology approved by NSA or
NIST and appropriate for the application’s Mission
Assurance Category (e.g., X.509/SSL or Kerberos).

The application is a
distributed client-server
application that:
operates in a high level
of concern environment
in which the security
protections are not
adequately robust, and
performs sensitive
functions or handles
high-value information.

Verify that before accepting requests from a client
process, the server process authenticates that client
process using appropriate, approved technology.

V1 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1);
29 (3.2.1.7)

V1.1: 4.1.27

4.4.18: Peer-to-
Peer Interprocess
I&A

Before accepting any requests from one another, the
application’s peer processes must mutually
authenticate one another using an interprocess
authentication technology approved by NSA or
NIST and appropriate for the application’s Mission
Assurance Category (e.g., X.509/SSL or Kerberos).

The application is a
distributed client-server
application t hat operates
in a high level of
concern environment in
which the security
protections are not
adequately robust, and
performs sensitive
functions or handles
high-value information

Verify that peer processes authenticating using
appropriate, approved techn ology before accepting
requests from one another.

V1 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1);
29 (3.2.1.7)

V1.1: 4.1.28

4.4.19: Strong
I&A of trusted
users

The application must require strong authentication
of users who perform administrative or other trust ed
functions before granting those users access to any
of the application’s administration or trusted
processes.

 Verify that administrative and other trusted users can
only be authenticated by an application using strong
authentication techniques. Anythin g less should fail.

V1 BP

4.4.20: I&A using
PKI certificates

The application must support the PKI (X.509)
certificate class appropriate to the application’s
Mission Assurance Category: (1) Mission
Assurance Categories I and II: DOD PKI Class 4
certificates on tokens, (2) MAC III: Class 3
certificates on tokens or used with SSL/TLS.

The application
performs certificate-
based I&A.

Verify that I&A mechanism uses the Mission
Assurance Category -appropriate type of certificate.

V1 1 (4.8.2); 2a
(IATS-2), 2b
(IATS-2), 2c
(IATS-1); 3
(Selection of
appropriate
DOD PKI
certificate
assurance
levels); 29
(3.2.1.4.3)

V1.1: 4.1.9

4.4.21: Two-way
mutual
authentication

The application must perform two-way mutual
authentication, i.e., client must authenticate server,
based on the DOD PKI X.509 Server certificate; and
server must authenticate client, based on the client’s
DOD PKI X.509 personal identity certificate.

The application is a Web
application

Verify the two-way mutual authentication
requirement was met during the application
development planning stage and maintained
throughout application development cycle. Post
application development cycle, verify that the
requirement was properly implemented and
functional by testing the application and conducting
3rd party sou rce code review.

V1 29 (3.2.1.7)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 41

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.22: Certificate
validation

The Application must be programmed to interpret
the directory -stored Certificate URL directly for
certificate validation. If this is not the case, the
application and the directory it uses must enable the
application to validate the certificate in real time.

The application is PK-
enabled server
application. The local
directory used by
application can store
Certificate URLs issued
by DOD PKI CA.

Verify that the application directly interprets the
Certificate URL. If not, verify that the application
enables real time certificate validation.

V23 BP

4.4.23: Session
tokens

The application should use only the user’s X.509
certificate or an encrypted one-time (non-persistent)
cookie as the session reauthentication token. No
other mechanism (i.e., passwords embedded in
HTML
 form fields, URLs, or persistent or unencrypted
cookies) may be used.

The application is a Web
application that uses
session tokens for user
reauthentication

Verify the requirement to use only X.509 certificates
or encrypted one-time cookies was met during the
application development planning stage and
maintained throughout application development
cycle. Post application development cycle, verify
that the requirement was properly implemented and
functional by testing.

V1, (V5, V19) BP

4.4.24: I&A using
PKI tokens

The application must support the type of NSA -
certified token appropriate to the application’s
Mission Assurance Category: (1) MAC I and MAC
II: FORTEZZA, common access card (CAC), or
another NSA -approved Class 3 or Class 4 hardware
token; MAC III: CAC or software token (until DOD
PKI transition to CAC)

The application
performs token-based
I&A

Verify that client application I&A supports the
Mission Assurance Category-appropriate tokens, and
that these tokens have been NSA -certified.

V1 2a (IATS-2), 2b
(IATS-2), 2c
(IATS-1); 3
(PKI Tokens);
29 (3.2.1.4.2)

V1.1: 4.1.10

4.4.25: Support
for CAC

The application must be able to accommodate use of
the CAC by the ASD C3I-defined deadline, with
minimal change to the application code.

Application performs
I&A based on
certificates stored in
software tokens

Verify that I&A mechanism can accommodate use of
CAC with little or no change to application code.

V1 3 (PKI Tokens) V1.1: 4.1.17

4.4.26: Browser
support for tokens

By the ASD C3I-defined deadline for migration to
hardware tokens, browsers, including those that
already support software tokens, must provide the
necessary APIs and plug-ins to support use of CAC
and/or FORTEZZA for storing the user’s
certificates appropriate for the particular
application. These APIs include RSA Cryptoki or
Microsoft CryptoAPI for CAC, Cryptoki or
Microsoft Cryptographic Service Provider plug-in
for FORTEZZA).

 Verify that the browser provides the necessary APIs
and/or plug-ins to accommodate use of CAC and/or
FORTEZZA (as appropriate).

V1 3 (PKI Tokens)

4.4.27: I&A
through encrypted
HTML forms

I&A implemented based on UserID and static
password, should be implemented with UserID and
password transmitted from browser to server either
via (1) encrypted HTML form fields (never
unencrypted), or (2) encrypted one-time cookies
(never unencrypted or persistent).

The application is a Web
application intended to
serve users for whom
the requirement to use
PKI certificates has been
waived

Verify the requirement to perform I&A via encrypted
HTML forms was designed into the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by testing.

V5, V18, V19 BP

4.4.28: Non -PKI
I&A

The application must use PKI-based I&A, and must
not use HTML forms to authenticate clients except
when the application is designed to be used by users
for whom the requirement to use PKI certificates
has been waived (i.e., DOD/military retirees and
dependents; academia)

The application is a Web
server application

Verify requirement to disallow the use on non-PKI
I&A was designed into the application’s development
cycle. Post application development, verify that the
requirement was properly implemented and
functional by testing. If not, verify that an exemption
waiver is on hand.

V1 BP

4.4.29: No bas ic
authentication

The Web server’s Basic authentication capability
must not be used over connections that are not
protected by HTTPS and SSL/TLS.

The application is a Web
application

Verify that the application cannot authenticate over
standard HTTP connections (non-encrypted).

V1, V5 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 42

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.30: No hard-
coded credentials

The application must not include hard coded
credentials stored within or mapped to a Web page,
script, function key, or any other type of source
code file.

The application is a Web
application

Verify the application does not use hard-coded
credentials. Verification can be performed scanning
the application to search for credentials and other
sensitive information.

V1, V2, V5 2d (IAIA-2), 2e
(IAIA-2)

4.4.31: No I&A
by Java applets

Web applications must not use Java applets to
perform I&A.

The application is a Web
application.

Verify that the application I&A is not implemented
via Java applets.

V1 BP V1.1: 4.1.15

4.4.32: Required
certificate types

The following certificate types must be used for
Web server applications: (1) Unclassified private
Web server: Class 3 or Class 4 PKI (X.509)
certificates transmitted via Secure Sockets Layer
(SSL); (2) Public-access Web server: Class 3 or
Class 4 PKI (X.509) certificates transmitted via
SSL; (3) Classified Web server: appropriate class of
PKI (X.509) certificates as determined by the
classification of the server, and transmitted via SSL .

The application is a Web
Server application

Verify that the certificates used for I&A to the Web
server application are of the appropriate Class, and
are transmitted via SSL.

V1 3 (Web server
access control
via PKI)

V1.1: 4.1.11, 4.1.12, 4.1.13

4.4.33: Class 4
certificates

The application must be able to accommodate use of
Class 4 certificates with minimal change to the
application code.

The application
currently performs I&A
using Class 3 certificates

Verify that the I&A mechanism can accommodate
Class 4 certificates with little or no change to
application code.

V1 3 (Evolution of
DOD
certificates)

V1.1: 4.1.16

4.4.34: I&A using
biometrics

The application I&A mechanism shall use
biometrics in accordance with DOD policy.

The application
performs user I&A using
biometrics

Verify that the application I&A mechanisms that use
biometrics are implemented in compliance with DOD
policy, when such a policy is available.

V1 1 (4.8.2), 13, 29
(3.2.1.4.4)

V1.1: 4.1.18

As of February 2003 the draft
DOD biometric policy has not
yet been approved and
finalized.

4.4.35: Strong
passwords

The application’s password management
mechanism must prevent users from choosing
passwords that do not comply with the password
construction rules defined in DODD 8500.1, i.e., (1)
The password must be case-sensitive; (2) The
password must contain at least eight characters; (3)
The password must not contain spaces or a “+”; (4)
The password must contain at least one [1]
uppercase letter, one [1] lowercase letter, and one
[1] non-alphanumeric (“special”) character. In
addition, the password should not constitute or
contain: (1) a word found in the dictionary of a
major human language (e.g., English, French,
German, Spanish, 2) a text string commonly known
to be used as a password (e.g., “ password”,
“administrator”, “nobody”), (3) a string(s) of
repeating characters, e.g., “ee”, designated by the
administrator as prohibited, (4) the user’s name or
user ID

The application
performs user I&A
based on UserID and
static password

Verify that password management mechanism rejects
user-selected passwords that do not conform to
specified password construction rules.

V1, V4 2d (IAIA-2), 2e
(IAIA-2); 29
(3.2.1.4.1.6,
3.2.1.4.1.7,
3.2.1.4.1.8)

V1.1: 4.1.19, 5.1.1

An example of a correctly
constructed p assword: C@5t1e!

4.4.36: Assigment
of User and
Group IDs

The application must not prevent the administrator
from assigning any UserID he/she chooses to any
user account, or from assigning any GroupID he/she
chooses to any group account. The application mu st
not force the administrator to assign a particular
UserID to a particular user account (e.g.,
“Administrator” to the administrator account), and
must not force the administrator to assign a
particular GroupID to a particular group account.

 Verify that the application does not constrain
administrator’s assignment of UserIDs to accounts.

V1 BP V1.1: 4.1.34

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 43

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.37:
Trustworthy
credentials only

The application must not authenticate users based
on UserID alone; the application must require users
to present a trustworthy authentication credential
(e.g., password, certificate, and biometric).

The application
performs user I&A
based on UserID and
static password

Verify that the application does not allow login by
users who do not present trustworthy authentication
credentials.

V1 BP V1.1: 4.1.34

4.4.38: Password
changes by user

The application’s password management
mechanism must: (1) Enable the admi nistrator to
assign passwords to users; (2) Require the user to
change his/her administrator-assigned password
after the first login using that password; (3) Enable
the user to change his/her own password on demand
thereafter with no restrictions as to frequency of
changes allowed, (4) Require that the new password
selected by the user contain at least four [4] new
characters.

The application
performs user I&A
based on UserID and
static password

Verify that the application’s password management
mechanism enables administrators to assign user
passwords, requires users to change administrator-
assigned passwords, and enables users to change their
own passwords on demand with no restrictions as to
frequency of changes allowed.

V1, (V4) 2d (IAIA-2), 2e
(IAIA-2); 29
(3.2.1.4.1.1,
3.2.1.4.1.5)

V1.1: 4.1.20, 5.1.2

4.4.39: Password
changes by
administrator

The application must ensure that only the
administrator is allowed to change passwords other
than his/her own.

The application
performs user I&A
based on UserID and
static password

Verify that the application does not allow users other
than the administrator to change passwords not
associated with their own UserIDs.

V1, (V4) 29 (3.2.1.4.1.4) V1.1: 4.1.20

4.4.40: New
password after
expiration

The application must not authenticate a user whose
password has expired until the user changes the
expired password.

The application
performs user I&A
based on UserID and
static password

Verify that the application forces a user whose
password has expired to select a new password
before authenticating him/her.

V1 29
(3.2.1.4.1.1.2)

V1.1: 4.1.22

This requirement is optional for
applications that handle only
publicly-releasable data.

4.4.41: Non -reuse
of expired
password

The application’s password management
mechanism must be able to recognize a user’s
attempt to choose one of his/her previous, now-
expired password(s), and must prevent the user from
choosing such a password. The new password
chosen by the user must contain at least four (4)
characters not found in the user’s expired password.
The administrator should be allowed to specify the
number of expired previous passwords that must not
be chosen by a user.

The application
performs user I&A
based on UserID and
password

Verify that the application prevents the user from
choosing one of his/her previous, expired passwords.
Verify that the application allows the administrator to
specify how many previous passwords cannot be
chosen by the user.

V1 2d (IAIA-2), 2e
(IAIA-2); 29
(3.4.1.4.1.3)

V1.1: 5.1.3

4.4.42: Unique
User IDs

The application must not allow the same UserID to
select or enter more than one password.

The application
performs user I&A
based on UserID and
password

Verify that the application does not allow one UserID
to choose or login using more than one password.

V1 2d (IAIA-2), 2e
(IAIA-2)

V1.1: 4.1.30

4.4.43: Unique
passwords

The application must not allow more than one
UserID to select or enter the same password.

The application
performs user I&A
based on UserID and
password

Verify that the application does not allow more than
one UserID to choose or login using same password.

V1 2d (IAIA-2), 2e
(IAIA-2)

V1.1: 4.1.31

4.4.44: Password
expiration

The application’s password management
mechanism must enable the administrator to set an
expiration threshold for every password associated
with every UserID.

The application
performs user I&A
based on UserID and
static password

Verify that the application’s password management
mechanism enables the administrator to configure a
password expiration threshold for every password .

V1 29 (3.2.1.4.1.1) V1.1: 4.1.21, 5.1.3

This requirement is optional for
applications that handle only
publicly-releasable data.

4.4.45:
Authentication for
every session

The application must require the user to type his
password every time he attempts to initiate a new
processing session. The application must not store
user passwords in cookies, client- or server-side
scripts, or any other “replayable” form that
automates user login so that the user does not have
enter his password to login when initiat ing a new

The application
performs I&A based on
UserID and static
password

Verify that the application requires the user to log in
every time he initiates a session. Verify requirement
was designed into the application’s development
cycle. Post application development, verify that the
requirement was properly implemented and
functional by testing.

V1, (V19) BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 44

session.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 45

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.4.46: No
anonymous
accounts

The application must not authenticate anonymous
UserIDs.

The application
performrs user I&A
based on UserID and
password

Verify that the application does not allow login by
anonymous UserIDs.

V1 BP V1.1: 4.1.32

4.4.47: Explicit
log-out

The application must enable the user to explicitly
log out to terminate his/her session.

Application performers
user I&A based on
UserID and password

Verify that the application allows the user to
explicitly terminate a session.

V33 BP

4.4.48: Assurance
of I&A
mechanisms

The application may use an I&A technology other
than UserID and static password only if that I&A
technology can be proved to be at least as secure as
UserID and static password I&A

The application is an
electronic records
management application

Verify that it is not as easy to bypass or subvert the
alternate I&A mechanism as it is to subvert (e.g.,
through password guessing or cracking)
authentication based on UserID and static password.

V1 6 (C2.2.7.1)

4.4.49:
Confidentiality of
transmitted I&A
data

The application must encrypt user passwords and
any other sensitive I&A data before transmission
over a network, and the strength of that encryption
must be at least equivalent to the assurance and
robustness of encryption used to protect the
information that will be accessed after the user is
authenticated (i.e., if the information is classified
and transmitted over a lower-level network, the
password must be encrypted with at least NSA -
approved Type 1 high robustness encryption).

Application transmits
sensitive I&A data (e.g.,
passwords, biometric
data, certificates) over a
network

Verify that the application encrypts user passwords
with appropriate, approved cryptographic technology
of the appropriate level of assurance and robustness
before transmitting them over network.

V1, V5, V18 2d (IAIA-2), 2e
(IAIA-2); 27
(6.6.4.5); 29
(3.2.1.5.1)

V1.1: 4.1.24, 5.1.4

Use of hexadecimal or another
non-cryptographic encoding
scheme instead of encryption is
unacceptable.

4.4.50:
Confidentiality of
password in use

The application must prevent any other process or
user from reading cleartext passwords while they
are being used by the application.

Application manipulates
cleartext passwords.

Verify that during the process of manipulating
cleartext passwords, the application prevents any
other process or user from reading the cleartext I&A
data.

V1, V5 BP V1.1: 4.1.25

4.4.51:
Confidentiality of
I&A data at rest

The application must ensure that user passwords and
all other sensitive I&A data (certificates, biometric
templates, raw biometric material, etc.) used by the
application are encrypted before they are stored.
The strength of cryptography used must be least
equivalent to the assurance and robustness of
encryption used to protect the information that will
be accessed after the user is authenticated when that
information is at rest. Furthermore, the application
must not be exploitable by unauthorized users to
decrypt and read the application users’ stored I&A.

 Verify that the application ensures that all I&A data it
uses are encrypted with appropriately assured, robust
cryptography before those data are stored. Verify that
the application cannot be used in any way to decrypt
and gain unauthorized read-access to the I&A data
used to authenticate users of the applicat ion.

V1, V5 2d (IAIA-2), 2e
(IAIA-2); 29
(3.2.1.5.2)

4.4.52: Integrity
of I&A data

The application must not be exploitable to modify
I&A data such as passwords, certificates, biometric
templates, raw biometric material, etc.

 Verify that the application cannot be used to bypass
access controls or spoof trusted users to gain
unauthorized write-access to the I&A data used to
authenticate users of the application.

V1, V2, V6 15 (4.7 -4.8) V1.1: 4.1.26, 4.4.19

4.4.53:
Availability of
I&A data

The application must not be exploitable to delete
I&A data such as passwords, certificates, biometric
templates, raw biometric material, etc.; or to destroy
the interface between the application’s I&A
mechanism and its I&A data. The application’s
operation must not threaten the availability of the
I&A data used to authenticate its users.

 Verify that the application cannot be used to bypass
access controls or spoof trusted users to gain
unauthorized delete-access to the I&A data used to
authenticate users of the application, or to attack the
interface between the application’s I&A mechanism
and its I&A data. Verify that the application does not
operate in a way that threatens or causes denial of
access to the I&A information.

V2 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 46

4.7 Authorization and Session Control

This subsection lists requirements governing how applications authorize users and external processes access to application resources, and to data
handled by the application, and also how applications perform session control (i.e., deauthorization and reauthorization of users). An application may
invoke an external authorization mechanism, such as a Role Based Access Control implementation, via trustworthy calls, only if that external
authorization mechanism is implemented by an approved technology. See IATF (Reference 27) Section 4.3.1.2 for a discussion of the processes and
technologies involved in authorization.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.5.1: User
authorization

The application must ensure that users have been
authorized to perform the functions they attempt to
perform or access the resources (including data)
they attempt to access, and that those authorizations
explicitly allow them to perform those functions or
access those resources/data in the ways the users
attempt to do so.

 Verify that the application ensures that users have
been authorized before allowing them to access the
application functions or resources they request.

V2, V34 2d (IAAC-1,
PRINK-1), 2e
(IAAC-1,
PRNK-1), 2f
(IAAC-1,
PRNK-1)

V1.1: 4.2.1

4.5.2:
Authorization
management tool

The application must provide a tool for creating and
modifying authorization information (e.g., ACLs,
active accounts). For server applications, the tool
must be able to create or modify this information
without having to restart the application. The
application must ensure that the tool can be
accessed only by an authorized user.

 Verify that the application provides a tool for
creating and managing authorization information.

V34, (V2) 2d (IAAC-1), 2e
(IAAC-1), 2f
(IAAC-1); 29
(3.2.4.3,
3.2.16.1,
3.2.16.2,
3.2.16.11,
3.2.17.3,
3.2.17.4)

V1.1: 4.2.2

4.5.3: Interprocess
Authorization

The application must also perform interprocess
authorization using technology (e.g., X.509
certificates) approved by NSA or NIST and
appropriate for the application’s Mission Assurance
Category.

The application
performs interprocess
I&A

Verify that the application processes perform
interprocess authorization using approved
technology.

V34 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1)

V1.1: 4.2.6

4.5.4: Application
least privilege

The privileges granted to application executables at
any point in time (including programs, processes,
scripts, Java applets, etc.) must be the absolute
minimum privileges required for the executable to
operate correctly at that point in time.

 Verify that the application is always granted the least
privileges necessary to function. It probably will be
necessary to verify that this requirement was
considered and met during the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V26 2d (ECLP-1), 2e
(ECLP-1), 2f
(ECLP-1); 29
(3.2.15.3)

V1.1: 5.2.5, 5.2.6, 5.2.7

4.5.5: PBAC or
RBAC

The application must implement Policy-Based
Access Control (PBAC) or Role-Based Access
Control (RBAC) for authorizing user privileges in
conjunction with its discretionary and mandatory
data access control schemes.

 Verify that the application’s authorization function is
implemented via PBAC or RBAC, and that it is
possible to designate access control privileges by role
or other policy-determined grouping of users.

V2, V34 2a (ECPA-1),
2b (ECPA-1),
2c (ECPA-1);
27 (4.3.1.3); 29
(3.2.16.1)

4.5.6: RBAC for
privileged
accounts

The application must implement RBAC to designate
and authorize privileged accounts (e.g.,
administrator accounts).

 Verify that the application ensures that RBAC is used
to designate and authorize privileged accounts.

V2, V34 2a (ECPA-1),
2b (ECPA-1),
2c (ECPA-1);
29 (3.2.16.1,
3.2.16.10)

V1.1: 4.2.7, 5.2.1, 5.2.2

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 47

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.5.7: Application
roles and
privileges

The role(s) assigned to an application process must
directly correspond to the duties/functions assigned
to that process.

The application
implements RBAC

Verify that the roles granted to application processes
are correct. It probably will be necessary to verify
that this requirement was considered and met during
the application’s development cycle. Post application
development, verify that the requirement was
properly implemented and functional by conducting
3rd party source code review.

V34 2d (ECLP-1), 2e
(ECLP-1), 2f
(ECLP-1)

V1.1: 4.0.12, 5.2.1, 5.2.2, 5.2.4,
5.2.5, 5.2.6, 5.2.7

4.5.8: RBAC in
classified
applications

The application must ensure that its RBAC
implementation enforces separation of duties and
least privilege.

The application
implements RBAC and
handles classified data

Verify that the classified application ensures that
RBAC enforces separation of duties and least
privilege.

V2, V26, V34 2d (ECLP-1), 2e
(ECLP-1), 2f
(ECLP-1)

V1.1: 4.2.8

4.5.9: Process
least privilege

Application processes that act on behalf of users or
other processes must not be granted privileges
greater than those granted to the users or other
processes on whose behalf those processes operate.

The application is not a
“trusted” (multilevel
secure) application

Verify that the application includes no processes that
require privileges greater than the privileges granted
to the user or other process on whose behalf the
processes operate.

V26 2d (ECLP-1), 2e
(ECLP-1), 2f
(ECLP-1);

V1.1: 4.0.12

4.5.10: No
privilege-
authorization
mismatch

The application’s authorization mechanism must
prevent unauthorized users from assigning or
changing access privileges assigned to user, group,
or role.

 Verify that only the administrator or other designated
trusted user is able to assign or change the access
privileges associated with any user, group, or role.

V2 6 (C2.2.3.15);
29 (3.2.16.9)

4.5.11: Group
privileges

The application must enable the creation of different
user groups, and the assignment of different
privileges to each group.

The application is an
electronic records
management application

Verify that the application’s authorization mechanism
supports the creation of user groups, and the
assignment of unique privileges to each created
group.

V2 6 (C.2.2.7.3)

4.5.12:
Relinquishing of
privileges

A privilege should be granted to an application
process only for as long as it takes the process to
perform the action for which it requires the
privilege. The privilege must be relinquished by the
process as soon as the process has completed the
privileged action. If the process requires the same
privilege later to perform another action, that
privilege must be granted again in a separate
transaction. The process must not “hold onto” any
privilege in anticipation of future use.

 Verify that the application relinquishes any additional
privileges as soon as necessary. It probably will be
necessary to verify that this requirement was
considered and met during the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V26, V33 2d (ECRC-1),
2e (ECRC-1)

4.5.13: Maximum
number of
sessions

The application must enable the administrator to
configure the maximum number of simultaneous
sessions allowable per UserID, role, and per
organization/group. The application must also
prevent users who reach their maximum number of
allowed sessions from initiating another session
until they terminate an active session.

The application allows
multiple simultaneous
sessions by a single user
account, role, or group

Verify that the application enables administrator to
configure maximum number of simultaneous sessions
allowed per UserID, per role, and per
organization/GroupID. Verify that the application
prevents users who reach this maximum from
initiating a new session until they terminate an active
session.

V26, V34,
(V27); 2d
(SCLO-2), 2e
(SCLO-2)

BP V1.1: 4.2.9

4.5.14: Session
inactivity timeout

The application must enforce a session timeout that
suspends user access to the application after a
configured period of inactivity. This session
inactivity timeout must not be omitted from the
application even if the application implements other
periodic timeouts unrelated to inactivity (e.g., to
impose arbitrary session lengths). After the timeout
occurs, the application must require the user to
reauthenticate himself/herself before allowing that
user to resume the suspended session. The
application must also enable the user to suspend
his/her application session at will.

 Verify that the application suspends user access after
configured period of inactivity. Verify that the
application requires user to login again before
resuming suspended session. Verify that the user can
suspend his/her session at wil l.

V2, V33 29 (3.2.5.12) V1.1: 4.2.10

Also referred to as a
“deadman” capability.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 48

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.5.15:
Configuration of
inactivity timeout

The application must allow the administrator to
configure the session inactivity timeout.

 Verify that administrator can configure duration of
inactive session timeout period

V2, V33 29 (3.2.5.12.3,
3.2.5.12.4)

4.5.16: Session
timeout
notification

The application’s session timeout capability must
notify the administrator when a session timeout
occurs.

 Verify that the administrator is notified whenever an
active application/user session times out.

V35 29 (3.2.5.12.5)

4.5.17:
Confidentiality of
authorization data

The application must protect the confidentiality of
its information associated with user authorization
(e.g., access control lists).

 Verify that the authorization mechanism used by the
application protects confidentiality of the
authorization information (e.g., access control lists,
etc.) used to make access control decisions governing
access to the application’s data, executables, and
resources.

V2 BP V1.1: 4.2.3

4.5.18: Integrity
of authorization
data

The application must ensure that the integrity of the
authorization information (e.g., access control lists)
used to authorize its users is protected unauthorized
modification or substitution.

The application
performs authorization
of users or processes

Verify that the application adequately protects its
authorization information from unauthorized
modification or substitution.

V2 BP V1.1: 4.2.4

4.5.19:
Availability of
authorization data

The application must not be exploitable to delete
authorization data such as access control lists, or to
destroy the interface between the application’s
authorization mechanism and its authorization data.
The application’s operation must not threaten the
availability of the authorization data used to assign
privileges and make access control decisions related
to its users.

The application
performs authorization
of users or processes.

Verify that the application cannot be used to bypass
access controls or spoof trusted users to gain
unauthorized delete-access to the authorization data
used to assign privileges and make access control
decisions related to users of the application, or to
attack the interface between the application’s
authorization mechanism and its authorization data.
Verify that the application does not operate in a way
that threatens or causes denial of access to the
authorization information.

V2 BP V1.1: 4.2.5

4.8 Access Control

This subsection lists requirements governing how applications control access by users and external processes to application resources, and to data
handled by the application. These requirements pertain both to applications that interact with the underlying host or surrounding infrastructure to
provide access control, and to applications that perform their own access control in some form (e.g., using embedded digital rights management
mechanisms). See IATF (Reference 27) Section 4.3.1.4 for a discussion of the processes and technologies involved in access control.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.6.1:
Unauthorized
access

The access controls used by the application must
prevent unauthorized users from reading or
manipulating data, application resources, devices,
etc. that are created, manipulated, or used by the
application.

 Verify that the access controls of the underlying host
environment are correctly configured, and that all
encrypted files are unable to be decrypted, to prevent
an account set up without the appropriate privileges
and without access to the necessary cryptokey(s)
from reading, writing, executing, deleting, copying,
or any of the following items created by, belonging
to, or used by the application: (1) data files, (2)
executable files, (3) devices, 4) configuration files.

V2 2 (5.10.2); 2a
(ECCD-2), 2b
(ECCD-2), 2c
(ECCD-1), 2d
(ECCD-1); 6
(C2.2 .5.2,
C2.2.5.4); 29
(3.2.5)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 49

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.6.2:
Unauthorized
actions

The application must prevent authorized users from
using the application to perform any function that
they are not authorized to perform.

 Verify that it is not possible for an account set up
without the appropriate privileges to use perform any
application function that should not be accessible to
that account, given its lack of appropriate privileges.

V2 2 (5.10.2); 6
(C2.2.5.4,
C2.2.6.3.2,
C2.2.6.4.)

4.6.3:
Unauthorized
access to roles

The application must prevent users from performing
any functions that are not explicitly authorized for
their role(s).

 Verify that it is not possible for an account set up to
be excluded from a given role to perform application
functions that are authorized to be performed only by
accounts that belong to that role.

V2 2 (5.10.2); 6
(C2.2.7.2)

4.6.4: Mandatory
access control,
classified data

The application must provide the necessary APIs to
an underlying OS (and, if appropriate, DBMS) that
implements Mandatory Access Controls (MAC)
robust enough to protect the classified data from
unauthorized disclosure, or use NSA -approved Type
1 cryptography to encrypt the data before storage.

The application stores
classified data, and can
be accessed by users
who are not cleared to
read those data

Verify that the application uses underlying
OS/DBMS/Web server MACs to protect the
classified data, and that it is imp ossible for an
account set up with a lower clearance level than
required to access data at a particular classification
level to access those data. Verify that if the
application does not use the underlying MACs to
provide this protection, it encrypts the classified data
before storage using NSA -approved Type 1
cryptography.

V2 V1.1: 4.2.11, 5.2.8
Applies to all classified
applications, regardless of
Mission Assurance Category.

4.6.5:
Discretionary
access control,
classified data

The application must provide the necessary APIs to
an underlying OS (and, if appropriate, DBMS or
Web server) that implements Discretionary Access
Controls (DAC) robust enough to protect the data
from unauthorized disclosure.

The application stores
classified data, and can
be accessed by users
who do not have a need
to know for that data

(1) Verify that the application uses underlying
OS/DBMS/Web server DACs to protect the classified
data, and that it prevents an account set up not to
belong to the role or group (or other privileges
indicating need to know) that is authorized to access
a particular data item from accessing that data item.
(2) Verify that if the application does not use the
underlying DACs to provide this protection, it
encrypts the classified data before storage using
NSA-approved Type 1 cryptography.

V2 Applies to all classified
applications, regardless of
Mission Assurance Category.

4.6.6: DAC access
levels

The application must provide the necessary APIs to
an underlying OS and Web server that implements
DAC that can support, at a minimum, three levels of
access: (1) Open access (no I&A required, 2)
Controlled access (requires individual I&A, 3)
Restricted access to specific community of interest
(requires need to know)

The application is a Web
server application

Verify that the access controls used by the
application support at least three different access
levels, and that the appropriate I&A is required
before a user is granted access to a particular level.
Verify that the access controls used by the
application to separate and protect Restricted Access
data prevent any account set up to be outside of the
community of interest (as defined by role or user
group) from accessing those data.

V2 2d (ECAN-1),
2e (ECAN-1)

4.6.7: Access
control, sensitive
and MAC I
unclassified data

The application must provide the necessary APIs to
an underlying OS (and, if appropriate, DBMS) that
implements DACs robust enough to protect the
sensitive and MAC I unclassified data from
unauthorized disclosure, or use 3 Data Encryption
Standard (3DES) or Advanced Encryption Standard
(AES) to encrypt the data before storage.

The application stores
sensitive and/or MAC I
unclassified data and can
be accessed by users
who are not authorized
to read those data

Verify that the application uses underlying
OS/DBMS DACs to protect the sensitive and MAC I
unclassified data data, or invokes encryption of those
data before storage using AES or 3DES
cryptography.

V2 BP V1.1: 4.2.12

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 50

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.6.8: Access
control, need-to-
know separation

The application must provide the necessary APIs to
an underlying OS (and, if appropriate, DBMS) that
implements DACs robust enough to enforce the
separation of data t hat exist with different needs-to-
know, regardless of the classification or sensitivity
of those data. If the underlying OS/DBMS does not
provide the appropriately robust DACs, the
application must provide APIs to a cryptographic
module that can be used to encrypt the data before
storage to enforce need-to-know separation.

The application stores
data with different
needs-to-know, and can
be accessed by users
who are not authorized
to view all of those data.

Verify that the application uses underlying
OS/DBMS DACs to protect data, or encrypts
classified data before storage using NSA -approved
Type 1 cryptography.

V2 2d (ECAN-1),
2e (ECAN-1)

4.6.9: Labeling of
Classified data

The application must apply (or allow the user to
apply, as appropriate) the appropriate confidentiality
and integrity labels to the data at the time of
creation or modification. These labels must be
understood by the access control mechanism used to
control access to the data. NOTE: “Sensitive” in this
case is defined in Section 20 of t he NIST Act, Title
15 of the U.S. Code Section 278g-3.

The application is used
to create or modify
classified data

Verify that the application uses underlying
OS/DBMS access controls to protect classified data,
or encrypts classified data before storage u sing 3DES
or AES.

(V2) 2d (ECML -1),
2e (ECML-1);
29 (3.2.6.1.1,
3.2.6.4, 3.2.7.1)

V1.1: 4.2.14, 5.3.1

Applies to all classified
applications, regardless of
Mission Assurance Category.

4.6.10: Labeling
of Not Publicly
Releasable data

The application must apply a label to the data upon
creation or modification that clearly indicates that
the data are not releasable to the public. These
labels must be understood by the access control
mechanism used to control access to the data.

The application is used
to create or modify
private unclassified data

Verify that the application correctly labels classified
and sensitive data when those data are created or
modified. Verify that the labels are understood by the
access control mechanism.

(V2) 2d (ECML -1),
2e (ECML-1);
29 (3.2.7.1)

V1.1: 4.2.15, 5.3.2

4.6.11:
Classification
labels in metadata

The application must provide a capability to allow
users to define appropriate metadata/tags indicating
the classification label of a classified data element at
the time of creation or modification of that data
element. Data elements in this context include
whole databases, individual rows, and individual
records.

The application is a
database application

Verify that the application allows a user to assign
metadata or a metatag indicating classification to a
complete database, to an individual row in a
database, and to an individual record in the database

(V2) 2d (ECML -1),
2e (ECML-1); 6
(C4.1.1); 29
(3.2.18.5)

4.6.12: Marking
of output

The application must ensure that the data are
marked to reflect the sensitivity level/classification
of data produced by the application (including
handling caveats, code words, and dissemination
control markings). The application shall provide a
capability to enable trusted users to configure the
markings to be applied to the application’s printed
and transmitted output.

The application
transmits data or sends it
to a printer

Verify that data transmitted or printed by the
application are appropriately marked.

(V2) 2d (ECML -1),
2e (ECML-1);
29 (3.2.8.3,
3.2.8.4, 3.2.8.5,
3.2.8.6, 3.2.8.7,
3.2.8.8,
3.2.16.6)

V1.1: 4.2.16

4.6.13: Invalid
pathname
references

Whenever a pathname or URL referenced in the
application code is changed or removed from the
system, the application code must be changed to
change or delete that reference.

The application is a Web
application

Verify that the application code does not include any
references or pointers to nonexistent pathnames or
URLs.

V14 BP V1.1: 4.2.17

4.6.14: Truncated
pathnames

If a user presents a truncated pathname or URLs that
do not end in a file name: The application must not
allow the user to access the file system directory
indicated by the pathname.

The application is a Web
application

Verify that the application does not accept truncated
pathnames from users.

V13 BP V1.1: 4.2.18

4.6.15: Relative
pathnames

The application’s references to pathnames and
URLs must point to the absolute pathname/URL,
not to a relative pathname or URL.

The application is a Web
application whose code
contains references to
pathnames or URLs

Verify that the application code does not contain
references to relative pathnames or URLs.

V12 BP V1.1: 4.2.19

4.6.16: User input
of relative
pathnames

The application must not accept relative pathnames
or URLs input by users.

The application is a Web
application

Verify that the application does not accept relative
pathnames or URLs input by users.

V12, (V8) BP V1.1: 4.2.20

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 51

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.6.17: No
directly-entered
URLs

The application must not allow users to access Web
pages/resources not explicitly allowed by links on
the portal page by directly typing the URLs of the
forbidden pages/resources into their browser’s
“Location” line.

The application is a Web
portal application

Verify that the application does not allow users to
access pages/resources not explicitly allowed by links
on the portal page.

V20 BP V1.1: 4.2.21

4.6.18: Protection
of user identity

Browsers and other client applications should
ensure that cookies and other user identity
information stored on the browser/client platform
are protected from disclosure and tampering.

The application is a Web
client

Verify that the browser prevents unauthorized
reading or tampering with stored cookies and other
user identity information.

V2, V19 BP V1.1: 4.2.22

4.6.19: CGI script
“holes”

CGI scripts must not contain “holes” that can be
exploited to gain direct access to the underlying
operating system or to otherwise compromise the
application.

The application is a Web
application

Verify that the any CGI scripts contain no exploitable
“holes.”

V16 BP V1.1: 4.2.23

Review the description of
Vulnerability 16 and the for
more information on CGI script
“holes”. Review the
Application Security
Developer’s Guide for
information on how to identify
and avoid CGI script “holes” of
many types.

4.6.20: Database
views

The application must not rely on database views as
an access control mechanism.

The application is a
database application

Verify the application does not rely on database
views as an access control mechanism. Verification
can be accomplished by reviewing the database’s
access control settings

V2 BP

4.6.21: Data
change
notification

The application must indicate to users, upon access
to data or file, the date and time of the most recent
change to those data.

 Verify that the application displays a notification
message that informs the user who accesses a file or
data item of the date and time of the most recent
change to that file/data i tem.

(V2) 2a (ECCD-2),
2b (ECCD -2),
2c (ECCD-1),
2d (ECCD -1)

V1.1: 4.2.13

4.6.22:
Unauthorized
metadata changes

The application must prevent unauthorized users
from changing any metadata associated with
database entries or records created/manipulated by
the application.

The application is a
database application

Verify that the access controls used by the
application prevent an account created without the
necessary privileges from changing the metadata
associated with a database entry and with a database
record.

V2 2a (ECCD-2),
2b (ECCD -2),
2c (ECCD-1),
2d (ECCD -1); 6
(C2.2.3.13,
C2.2.3.16,
C2.2.3.22)

4.6.23: Changes
to record
associations

The application must prevent unauthorized users
from changing or deleting any established reference
links, or associations, or other relationships between
data elements.

The application is a
database application

Verify that the access controls used by the
application prevent an account created without the
necessary privileges from changing the established
links, associations, and other relationships between
data elements in the database.

V2 6 (C2.2.3.17)

4.6.24: No
modification of
read-only data

The application must prevent modification of any
data that are designated as read-only. The
application should also issue a w arning reminding
the user that the data are read-only when that user
attempts to move or delete read-only data.

 Verify that the access controls used by the
application prevent any account, no matter what
privileges are assigned to that account, from
modifying or overwriting read-only data. Verify that
when a user attempts to move or delete read-only
data, the application notifies the user that the data are
read-only.

V2 6 (C2.2.4.2)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 52

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.6.25: No
unauthorized
access to
cryptographic
materials

The application must ensure that its access controls
prevent unauthenticated, unauthorized users from
gaining access to any cryptographic material used
by the application, including keys, trust points, and
certificates. The application must also ensure that
access to private keys is strictly limited to users
authorized to access those keys.

The application uses
cryptography

Verify that the access controls used by the
application prevent an account set up with
insufficient privileges from accessing any of the
cryptographic material (e.g., keys, trust points,
certificates) used by the application. Verify that
access controls used by the application prevent an
account set up with any identity but that of the user
who owns a private key—regardless of the privileges
assigned to that account —from accessing the other
user’s private key.

(V2) 2a (ECCD-2),
2b (ECCD -2),
2c (ECCD-1),
2d (ECCD -1);
16 (4.2.3)

V1.1: 4.3.8

4.6.26: Separation
of encrypted and
unencrypted data

The application must ensure that its access controls
maintain strict separation between encrypted and
unencrypted data created or manipulated by the
application.

The application uses
encryption

Verify that the application stores encrypted data with
different access control characteristics (e.g., MAC
label, DAC privileges, etc.) than the data it stores in
the clear.

(V2) 2d (ECNK-1),
2e (ECNK-1);
16 (4.2.3)

4.6.27:
Cryptographic
separation of
classified
transmissions

The application must invoke NSA -approved Type 1
encryption of each data stream to accomplish
mandatory separation of different classifications of
data.

The application
transmits more than one
level of classified data,
or a mixture of classified
and SBU or Unclassified
data over the same
network.

Verify that when the application is going to transmit
data at one classification level, it invokes NSA -
approved Type 1 encryption of that data using a key
designated for that classification level befo re
transmitting the data, and that when it is going to
transmit data at a different classification level, it
invokes NSA -approved Type 1 encryption of the data
with a different key designated for that second,
different classification level.

V2 16 (4.2.3) V1.1: 4.3.3

4.6.28:
Cryptographic
need to know
separation of
transmissions

The application must invoke NIST FIPS 140-1
certified encryption of each data stream to
accomplish separation of different need to know
compartments or categories of data transmitted over
the same network.

The application
transmits more than one
need-to-know
compartment or
category of data over the
same network. No
waiver has been granted
to allow different
compartments/
categories of data to be
transmitted over the
same network without
cryptographic
separation.

Verify that when the application is going to transmit
data at one need-to-know, it invokes certified NIST
FIPS-140 encryption of that data using a key
designated for that need to know before transmitting
the data, and that when it is going to transmit data
with a different need to know, it invokes FIPS 140-1
encryption of the data with a different key designated
for that second, different need to know.

V2 2d (ECNK-1),
2e (ECNK-1);
16 (4.2.3)

4.6.29:
Cryptographic
separation o f
SAMI
transmissions

The application must invoke NSA -approved Type 1
encryption of any SAMI data stream transmitted
over the same network with non-SAMI data.

The application
transmits more than
SAMI data over a
network at the same
classification level as the
data.

Verify that when the application is going to transmit
SAMI data, it invokes NSA -approved Type 1
encryption of the data before transmission.

V2 2d (ECNK-2);
16 (4.2.3)

4.6.30:
Configurable
access controls

The access control mechanism used by the
application must provide an interface or tool to
enable the administrator to define the access control
characteristics of each data object and resource to be
controlled with relation to the individual user,
group, role, etc. that is allowed to access it.

 Verify that the access control mechanism used by the
application enables the administrator to define the
access control characteristics of all data objects,
executable files, configuration files, etc. owned or
used by the application. These characteristics should
be definable in terms of the access privileges to those
objects granted to an individual user account, a group
account, and a role account.

V2 29 (3.2.5)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 53

4.9 Confidentiality

This subsection lists requirements governing the methods used by applications to ensure the confidentiality of the data they manipulate, store, or
transmit. These requirements pertain to applications which augment, at the application layer—either through embedded functionality or by secure
calls to approved external encryption mechanisms—those confidentiality controls provided at lower (e.g., network, data link) layers such as Virtual
Private Networks and link encryption. See IATF (Reference 27) Section 4.3.2 for a discussion of the processes and technologies involved in
confidentiality.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.7.1: Encryption
API

There must be an API that enables the application to
invoke an encryption capability to selectively
encrypt data and files.

 Verify that an API is present that enables the
application to selectively invoke encryption.

V3, V23 BP V1.1: 4.3.1

4.7.2:
Nondisclosure of
cleartext data

The application must ensure that sensitive cleartext
data are not disclosed before they are encrypted.

 Verify that the application ensures that cleartext data
are protected from disclosure before they are
encrypted.

V1, V5, V18 BP V1.1: 4.3.2

4.7.3: Encryption
before
transmission,
classified or
SAMI data,
different level
network

The application must invoke NSA -approved Type 1
(high robustness) encryption of the data before
transmitting the data.

The application
transmits data over a
networ, and one or more
of the following is true:
(1) The data are
classified higher than
network; (2) So me users
on network are not
cleared to read data at
this classification; (3)
The data are SAMI data;
(4) The data are
classified and the
network is a public
network.

Verify that the application invokes appropriate,
approved encryption technology to encrypt data
before transmission (if necessary).

V5 2d (DCSR-3,
ECCT-2); 27
(7.1.4.4)

V1.1: 4.3.3

Encryption solves the problem
that arises that, when in transit,
the data fall outside the
protection of the application
that generated them.

4.7.4: Encryption
before
transmission,
classified data,
different need-to-
know network

The application must invoke encryption of data
before transmission using 3DES or AES (medium-
robustness), or the application owner must get a
signed waiver from the data owner allowing the
application to transmit the data unencrypted.

The application
transmits data over a
network. The network
and data are at the same
classification, but the
data have a different
need-to-know than the
network.

Verify that the application invokes appropriate,
approved encryption technology to encrypt data
before transmission (if necessary).

V5 27 (7.1.4.4) V1.1: 4.3.3

4.7.5
: Encryption
before
transmission,
sensitive or MAC
I unclassified
data, public
network

The application must invoke encryption of data
before transmission using 3DES or AES (medium
robustness). If the data are National Security Data,
the cryptography used should use NSA -approved
key management.

The application
transmits sensitive-but-
unclassified or MAC I
unclassified data over a
public network.

Verify that the application invokes approved
medium-robustness encryption technology (AES or
3DES) with appropriate key management to encrypt
data before transmission (if necessary).

V5 2e (DCSR-2,
ECCT-2); 27
(7.1.4.4); 29
(3.2.21.2,
3.2.21.8)

V1.1: 4.3.3

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 54

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.7.6: Encryption
of classified or
SAMI data at rest

The application must invoke encryption of data
before storing those data unless the u nderlying host
provides high-robustness access control and
confidentiality protection of the data at the file
system or DBMS level (in which case the
application need only ensure encryption at a basic
level of robustness). If the data are SAMI data, the
application must invoke NSA -approved Type 1
encryption. For all other data, the application must
invoke NIST FIPS 140-1 certified encryption. If the
data are National Security data, NSA -approved key
management should be used by the application in
connection with encryption of those data.

A waiver has not been
granted by the
responsible CIO
allowing the data to be
stored in unencrypted
form, and one or more
of the following is true:
(1) The data are
classified, and the
application can be
accessed by users not
cleared to read data of
that classification; (2)
The data are SAMI, and
the application can be
accessed by users not
authorized to read SAMI
data.

Verify that the application invokes appropriate,
approved encryption technology to encrypt data
before storing them, if necessary.

V2 2d (DCSR-3,
ECCR-3); 27
(7.1.4.4)

V1.1: 4.3.4

Encryption solves the problem
that arises when the application
is not running, and is thus no
longer able to control access to
the stored data it has generated.

4.7.7: Encryption
of MAC I
sensitive data at
rest

The application must invoke NIST FIPS 140-1
certified 3DES or AES (medium robustness)
encryption of data before storing those data. If the
data are National Security data, NSA -approved key
management should be used by the application in
connection with encryption of those data.

A waiver has not been
granted by the
responsible CIO
allowing the data to be
stored in unencrypted
form. The data are MAC
I sensitive data, and the
application can be
accessed by users not
authorized to read MAC
I and/or sensitive data.

Verify that the application invokes appropriate,
approved medium-robustness encryption technology
to encrypt data before storing them (if necessary).

V2 2d (ECCR-2),
2e (DCSR-2,
ECCR-1)

V1.1: 4.3.4

4.7.8: Encryption
of non-MAC I
sensitive data at
rest

The application must invoke encryption of data
using medium-robustness cryptography before
storing those data, unless the underlying host
provides medium-robustness access control and
confidentiality protection of the data at the file
system or DBMS level (in which case the
application need only ensure encryption at a basic
level of robustness). If the data are National
Security data, NSA -approved key management
should be used by the application in connection with
encryption of those data.

. Verify that the application invokes appropriate,
approved encryption technology to encrypt data
before storing them (if necessary).

V2 2d (ECCR-2),
2e (DCSR-2,
ECCR-1)

V1.1: 4.3.4

4.7.9: Protection
of cryptokeys

The encryption facility invo ked by the application
must ensure that unauthorized users cannot access
the cryptokeys needed to decrypt the data.

The application ensures
that data are encrypted

Verify that the encryption facility invoked by the
application allows only authorized users to access the
cryptokeys needed to decrypt data encrypted by that
facility.

V2, V3, V23 BP V1.1: 4.3.5, 4.4.19

4.7.10: PKI
encryption
certificates

The PKI invoked by the application must use DOD
PKI Class 4 or Class 3 encryption certificates when
performing the encryption.

The application invokes
a PKI to encrypt data

Verify that the PKI invoked by the application uses
DOD PKI Class 3 or Class 4 certificates to perform
the encryption.

(V3, V23) 4 (Digitally
Signed Email)

V1.1: 4.3.6

4.7.11:
Application o bject
reuse

Before shutdown, the application must delete/erase
all temporary files, cache, data, and other objects it
created during its execution.

 Verify that before shutdown, application
deletes/erases all temporary objects it created during
its execution.

V2 2d (ECRC-1),
2e (ECRC-1);
27 (7.1.5.2.2)

V1.1: 4.3.7

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 55

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.7.12:
Confidentiality of
cryptographic
material

The encryption facility invoked by the application
must protect from disclosure all sensitive
cryptographic material—that is, keying material,
private keys, and (if so indicated by the
application’s robustness) the cryptographic
algorithm implementation.

 Verify that the encryption facility invoked by the
application protects cryptographic data from
disclosure.

V2 BP V1.1: 4.3.8

4.7.13: Integrity
of cryptographic
functions and
material

The application must ensure that all sensitive
cryptographic functions and material used by the
application are protected from tampering
(corruption or modification) by users or processes.

 Verify that the application protects all cryptographic
material from corruption or unauthorized
modification.

V2 16 (4.2.3)

4.7.14: Cryptokey
revocation

The encryption facility invoked by the application
must handle and respond correctly to Certificate
Revocation Lists (CRLs) and Key Revocation Lists
(KRLs) issued by the cryptographic implementation
and must not continue to use or accept revoked
certificates or keys.

 Verify that the invoked encryption facility responds
correctly to KRLs and does not use revoked keys.

V23 2d (ECRC-1),
2e (ECRC-1);
16 (4.3.2.4)

V1.1: 4.4.20

4.7.15:
Confidentiality of
user identities

The application must not: () Reveal to external users
or processes the identity of any user associated with
any application session; (1) Include within or
append onto a data object an indicator of the identity
of the data’s creator or sender; (2) Invoke any
external process that includes within or appends
onto a data object any indicator of the identity of the
data’s creator or sender.

There is an operational
requirement for the
identities of users to be
protected from
disclosure.

(1) Verify that the application and any processes it
invokes do not automatically include in/append to
data any indicator of identity of data’s creator or
sender. (2) Verify that the application does not reveal
the identity of any user associated with any
application session.

V2 BP V1.1: 4.3.9

4.7.16: Protection
of sensitive Web
transactions

The application should use SSL or TLS (SSL
Version 3.0 or TLS Version 1.0) with approved
cryptographic and key management algorithms to
implement seamless end-to-end session encryption
of all network-based Web transactions in which
sensitive information is transmitted.

The application is a Web
application.

Verify that the application is using an approved
cryptographic suite (i.e., FIPS-compliant).
Additionally verify that all of the application’s
cryptologic functions are handled by the approved
suite

V5 BP

4.7.17: No storage
of sensitive data
in scripts

The application must not store sensitive information
of any type in Web scripts.

The application is a Web
application

Verify the application is not storing sensitive
information in web scripts. Compile a list of sensitive
information and scan code (visually and automated)
to located the presence of such information.

V2 BP

4.7.18: HTTP
POST for
sensitive data

The application should use HTTP POST only, and
never HTTP GET, over SSL -encrypted connections
to transmit sensitive information, including data in
HTML forms.

The application is a Web
application

Verify that the application will only transmit
sensitive information using HTTP POST commands
sent via SSL connections.

V5 BP

4.7.19: Browser
application
facilities

Scripts, cookies, or plug-ins should be used in Web
client (browser) applications only when the desired
functionality cannot be implemented using a more
secure mechanism.

The application is a Web
client application

Verify that Web client applications use no scripts,
cookies, or plug-ins unless it can be proven that no
more-secure alternative can be used to achieve the
same functional objective.

V31, V19 BP V1.1: 4.0.14

These mechanisms should not
be used just because they are
more convenient or familiar to
the developer.

4.7.20: Encrypted
cookies only for
sensitive data

Only encrypted non-persistent (one-time) cookies
may be used for transmitting sensitive data.
Unencrypted cookies and persistent cookies
(encrypted or not) must never be used to transmit
sensitive data.

The application is a Web
application

Verify that the application does not use persistent or
unencrypted cookies to store or transmit sensitive
data.

V19 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 56

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.7.21: No storage
of sensitive data
in immutable Java
types

The application must not store passwords and/or
other sensitive data in an immutable type (e.g.,
String) or in any type that has to wait fo r garbage
collection to purge the data from memory. The
application should store sensitive data in char[].

The application is a Java
application

Verify that the application does not rely on operating
system or programming language automated garbage
collection to delete data types that store sensitive
data. Verify requirement was designed into the
application’s development cycle. Post application
development, verify that the requirement was
properly implemented and functional by conducting
3rd party source code review.

V2 BP

4.7.22: No
persistence of
files in memory

The application must not contain processes that
create temporary files or file copies unless these
files/file copies are immediately purged from
memory upon termination of the process that
created them.

 Verify that if the application requires temporary files,
that these files are immediately purged upon process
termination. Verify that this requirement was
designed into the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V2 2d (ECRC-1),
2e (ECRC-1)

4.7.23: No
sensitive data in
redirects

The application must not include sensitive
information in any redirect messages that it returns
to clients.

The application is a Web
client application

Verify that the application does not include sensitive
information in any redirect messages.

V2 BP

4.7.24: No
questionable URL
extensions

The application must be able to recognize
questionable URL extensions, and validate all URLs
sent to it by clients to: () ensure they do not contain
such extensions, OR, () truncate the URL to remove
the dubious extension.

The application is a Web
server application

Verify that the application is able to recognize and
validate questionable URL extensions.

V8 BP

4.7.25: Limit data
returned to client

In response to a request or query from a client, the
application must return only the data requested, and
no additional data.

The application is a Web
server application

Verify that the application returns only the data
requested, and no additional data. This requirement
will probably need to be considered and met during
the application’s development and subsequently
tested by review of code.

V2 BP

4.7.26: No
sensitive data
stored by client

The application must not store any sensitive data.
All sensitive data should be stored by the Web
server, and retrieved by the client only when
needed.

The application is a
server application

Verify that the application does not store any
sensitive data. This requirement will probably need to
be considered and met during the application’s
development and subsequently tested by review of
code.

V2 BP

4.10 Integrity

This subsection lists requirements governing how applications ensure the integrity of the data they manipulate, store, or transmit, as well as the
integrity of their own data, executables, and runtime resources. These requirements pertain to applications in environments in which the application
augments at the application layer—through embedded functionality or secure calls to approved external integrity mechanisms (e.g., PKI-based
cryptographic hash or digital signature mechanisms)—any integrity controls provided by the application’s underlying host operating system and
surrounding security infrastructure. See IATF (Reference 27) Section 4.3.3 for a discussion of the processes and technologies involved in integrity.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 57

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.8.1: Integrity of
transmitted data

The application must use a NIST certified FIPS
140-1 or NSA -approved technology (as appropriate
for the application’s Mission Assurance Category
and robustness level) to implement a hash (e.g.,
Secure Hash Algorithm One [SHA-1]), checksum,
or digital signature (e.g., DSS) of the data before
transmission.

The application
transmits data over a
high level of concern
network.

Verify that the application invokes an approved
technology appropriate for the Mission Assurance
Category to apply a hash, checksum, or digital
signature to data before transmitting them.

V35 16 (4.3.3); 27
(4.3.3.1, 7.1.4.3)

V1.1: 4.4.1

4.8.2: Integrity of
transmitted code

The application must invoke an approved digital
signature technology to digitally sign the code prior
to transmission.

The application is used
to transmit application
code (may include
mobile code) over a high
level of concern network
with inadequately robust
security protections.

Verify that the application digital ly signs application
code using approved digital signature technology
before transmitting it over network.

V35 2a (DCMC-1,
ECTM-2), 2b
(DCMC-1,
ECTM-2), 2c
(DCMC,
ECTM-1)-1; 5
(1.1.3, 1.2.4)

V1.1: 4.4.2

For additional integrity, the
application may also i nvoke an
approved technology to apply a
hash or checksum to the code
before transmission.

4.8.3: Integrity of
stored data

The application must invoke NIST-certified or
NSA-approved technology (as appropriate for the
application’s Mission Assurance Category and
robustness level) to apply a hash, checksum, or
digital signature to the data before storage.

The underlying host
environment does not
provide access controls
sufficiently assured to
protect the integrity of
stored files/data.

Verify that the application invokes approved
technology appropriate for the Mission Assurance
Category to apply a hash, checksum, of digital
signature to data before storing them.

V2 BP V1.1: 4.4.3

4.8.4: Integrity
mechanism
validation

The application must be able to validate t he
integrity mechanism, and must reject data for which
the integrity mechanism validation fails.

The application is used
to retrieve stored data or
to receive transmitted
data that have an
integrity mechanism
applied to them:

Verify that the application validates integrity
mechanisms applied to data, and does not accept data
for which the validation fails.

(V23) 16 (4.3.3.1); 29
(3.2.12.1,
3.2.12.2,
3.2.19.1,
3.2.21.12)

V1.1: 4.4.4

4.8.5: Parameter
validation

The application must validate parameters before
acting on them, and must reject all parameters for
which one or more of the following is true: (1) Not
formatted as expected; (2) Do not fall within the
expected bounds (length, numeric value, etc.)

 Verify that the application validates all parameters,
and ensures that they do not violate any of the
expected rules for parameters.

V8 BP V1.1: 4.4.5

4.8.6: Notification
of acceptable
input

The application must inform the user of the
expected characteristics of the input —e.g., length,
type (alphanumeric, numeric only, alpha-only, etc.),
and numeric or alphabetic range.

The application accepts
user input.

Verify that the application informs user of the
acceptable characteristics of data to be input by the
user.

(V8, V10,
V11)

BP V1.1: 4.4.6, 5.5.2

4.8.7: Input
validation

The application must validate all data input by users
or external processes, and must reject all input for
which one or more of the following is true: (1) not
formatted as expected; (2) contains incorrect syntax;
(3) not a valid data string; (4) contains parameters or
characters with invalid values; (5) falls outside the
expected bounds (e.g., length, range); (6) contains a
numeric value that would cause a routine or
calculation in the application to divide any number
by zero; (7) contains any parameters the source of
which cannot be validated by the user’s session
token; (8) can induce a buffer overflow; (9) contains
HTML; (10) contains special characters, meta code,
or metacharacters that have not been encoded (if
encoding is allowed); (11) contains direct SQL
queries; (12) contains any other type of unexpected
content or invalid parameters; (13) contains a
truncated pathname reference.

 Verify that the application validates all data input by
users, and ensures that the input data do not violate
any of the expected characteristics for user input.

V7, V10, V11 BP V1.1: 4.4.5, 4.4.7, 5.5.3

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 58

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.8.8: Completion
of input validation

The application must suspend all processing of the
transaction in which input has been received until
the input has been completely validated.

 Verify that the application was designed to validate
all input before processing it. Verify requirement was
designed int o the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V8 BP V1.1: 4.4.5, 4.4.7

4.8.9: Argument
validation

All application programs, including CGI and shell
scripts, must perform input validation on arguments
received before acting on those arguments.

 Verify that the application was designed to validate
all input before processing it. Verify requirement was
designed into the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V8 BP V1.1: 4.4.5, 4.4.7

4.8.10: Validation
of external and
third-party input

The application must validate all inputs it receives
from any external processes, including processes in
third-party software integrated into the application,
in the same way it validates user input data.

 Verify that the application was designed to validate
all input from external processes. Verify requirement
was designed into the application’s development
cycle. Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V8 BP V1.1: 4.4.5, 4.4.7

4.8.11: Bounds-
checking
functions only

All functions in the application program must
perform bounds checking, such that the functions
check the size of all buffer or array boundaries
before writing to them, or before allowing them to
be written to. In addition, the application must limit
the size of what it writes to the buffer or array to the
size imposed by the buffer/array boundaries (i.e., to
prevent what is written from exceeding the
buffer/array size and overflowing the boundary).

 Verify that the application was designed to check
array boundaries. Verify that that after bounds
checking the buffer or array, the application does not
write data to that buffer/array that exceeds the size of
the buffer/array. Verify requirement was designed
into the application’s development cycle. Post
application development, verify that the requirement
was properly implemented and functional by
conducting 3rd party source code review.

V7 BP

4.8.12: Bounds
checking on all
array and buffer
accesses

The application must bounds check all arrays and
buffers every time those arrays/buffers are accessed.

 Verify that the application was designed to bounds
check all arrays and buffers upon access. Verify
requirement was designed into the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V7 BP

4.8.13: Input
validation before
database copying

The application must validate all input d ata before
copying those data into the database.

The application is
database front-end

Verify that the application was designed to validate
all input before processing it. Verify requirement was
designed into the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V11 BP V1.1: 4.4.5, 4.4.7

4.8.14: No HTML
in untrusted input

The application must reject any input containing
HTML (including HTTP strings that contain HTML
tags) from an untrusted user or other untrusted
source.

The application is a Web
server application

Verify that the application was designed to validate
the source of all input before processing it. Verify
requirement was designed into the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V1, V34 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 59

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.8.15: Rejection
of incorrect input,
high and medium
robustness

The application process that received the invalid
input must gracefully terminate the user process
with an error message to the user indicating that the
process is terminating as a result of an input error.

The application is of
high- or medium-
robustness. Data input
by users or external
processes cannot be
validated.

Verify that the application issues an error message to
the user warning that the user process is being
terminated as a result of an input error, then
gracefully terminates the user process.

V15 BP V1.1: 4.4.8

4.8.16: Rejection
of incorrect input,
low robustness

The application process that received the invalid
input must request the external user or process to
reinsert the data. If the reinserted data is still invalid,
the application must gracefully terminate the user
process with an error message to the user indicating
that the process is terminating as a result o f an input
error.

The application is of
low-robustness. Data
input by users or
external processes
cannot be validated.

Verify that the application requests the user or
external process to reinsert the data (ideally, with a
reminder of acceptable input characteristics). If the
application cannot validate the new data, verify that it
issues an error message to the user warning that the
user process is being terminated as a result of an
input error, then gracefully terminates the user
process.

V15 BP V1.1: 4.4 .8

A low-robustness application
may simply issue the warning
and terminate, without allowing
the user to attempt to resubmit
the data.

4.8.17: Input
validations by
server only

All user input validations must be performed by the
server application even if input validation has
already been done by the client application. The
client application must not be relied on to perform
trustworthy input validation.At best, client input
validation can be used to prescreen data before it is
validated by the server.

 Verify that all validations of user inputs are
performed by the server application, even if some
input validation has already been done by the client
application.

V8 BP V1.1: 4.4.9

4.8.18: No
execution of
active content in
data

The application’s validation of user input data that
contains active content (e.g., mobile code) must not
result in the execution of the active content.

 Verify that application validation of user input that
contains active content does not cause that active
content to execute.

V9 BP V1.1: 4.4.10

4.8.19: Process
integrity during
updates

The application’s data update processes must
operate correctly, and must not incorrectly reparse,
inadvertently introduce errors to, or otherwise
corrupt the data they update.

The application updates
data.

Verify that the application processes that update data
ensure that data updates do not contain errors and do
not otherwise corrupt data being updated.

V6 BP V1.1: 4.4.11

4.8.20: Validation
of integrity
mechanism on
transmitted code

The application must find and validate the digital
signature and any hash, checksum, or other
additional integrity mechanism applied to that code
prior to executing it. If the code’s integrity
mechanism cannot be validated, or is not present,
the application must discard the code without
executing it; and audit this discard.

The application receives
transmitted executable
code (e.g., mobile code):

Verify that the application validates digital signature
and any other integrity mechanism applied to
application code received over network. Verify that
the application discards without execution any code
that fails any integrity validation check. Verify that
the application discard of code is audited.

V32 29 (3.2.12.1,
3.2.12.2)

V1.1: 4.4.12

4.8.21: Protect
server executables
from malicious
code

The application must invoke a virus scanning tool to
scan all files received from users and external
processes to ensure these files do not contain
malicious content.

The application is a
server application whose
underlying infrastructure
does not adequately
protect the application
from malicious code.

Verify that the application invokes a virus scanning
tool when it first receives a file from a user or
external process.

V32 2a (ECVP-1),
2b (ECVP -1),
2c (ECVP-1)

Administrators must keep virus
signature files used by virus
scanning tools up to date. It is
assumed that client applications
will be configured with virus
scanning as per the relevant
STIG.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 60

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.8.22: Protect
server
configuration
from malicious
code

The application must invoke a virus scanning tool
whenever it executes a program that may access one
of the application’s configuration or other
parameter-containing files.

The application is a
server application whose
underlying infrastructure
does not adequately
protect the integrity of
the application’s
configuration and other
parameter-containing
files from corruption or
unauthorized
modification by
malicious code.

Verify that the application invokes a virus scanning
tool when executes a program that may access one of
the application’s configuration or other parameter-
containing files.

V32 BP V1.1: 4.4.13

Administrators must keep virus
signature files used by virus
scanning tools up to date. It is
assumed that client applications
will be configured with virus
scanning as per the relevant
STIG.

4.8.23: No
forwarding of
malicious code

The application must ensure that the data to be
forwarded do not contain or point to malicious code.

The application is a Web
application that forwards
data from an untrusted
user to another user.

Verify that the application was designed to prevent
forwarding of malicious code. Verify requirement
was designed into the application’s development
cycle. Post application development, verify that the
requirement was properly implemented and
functional by conducting 3rd party source code
review.

V32 BP

4.8.24: Integrity
of application
executable

The process that validates the application’s
executable code integrity mechanism checksum or
hash must be invoked every time the application is
executed to ensure that the application’s executable
code state has not changed since the original
integrity mechanism was applied. If this validation
fails, the validation process must prevent the
application from being executed, and notify the
administrator that the application code needs to be
replaced by an uncorrupted executable.

An integrity mechanism
(hash, checksum, or
other integrity
mechanism) was applied
to the application’s
executable code at
installation time (prior to
the application’s first
execution).

Verify that the application executable code’s integrity
mechanism is checked before every application
execution. Verify that the integrity checking process
prevents execution of applications that fail this
integrity check. Verify that integrity checking process
notifies administrator when integrity check fails.

V2 BP V1.1: 4.4.14

4.8.25: Code
signing

The application must not execute received code
until i t: (1) verifies that the code has been digitally
signed; and (2) validates the digital signature on the
code.

The application receives
mobile code, interpreted
(versus compiled) code,
or other active content.

Verify that the application does not run any mo bile,
interpreted, or active content code that has not been
digitally signed, or for which the digital signature
cannot be validated.

V32 BP V1.1: 4.4.22

4.8.26: Time/date
stamp of data
modification

The application must time/date stamp each data
modification or file update.

 Verify that the application applies time/date stamp to
data and files each time those data and files are
modified.

(V2) BP V1.1: 4.4.15, 5.4.1

4.8.27: Display of
time/date stamp

The application must display to each user who
retrieves the data the time and date on which the
data were last modified.

 Verify that the application displays to user who
retrieves data time and date those data were last
modified.

(V2) BP V1.1: 4.4.16, 5.4.2

4.8.28:
Initialization of
variables

The application code must explicitly initialize all of
its variables when they are declared.

The programming
language in which the
application is written
does not automatically
ensure that all variables,
when declared, are
initialized to zero.

Verify that all application variables are initialized
when declared.

(V23) BP V1.1: 4.4.18

Applications written in C will
not automatically initialize
declared variables to zero, as C
does not provide this capability.

4.8.29: Hidden
fields

The application must validate the source of all
HTML updates to hidden fields and must reject any
HTML field changes from unvalidated sources.

The application is a Web
application, with Web
pages that contain
hidden fields

Verify that the application validates all sources of
HTML field updates, and rejects all updates from
unvalidated sources.

V21 BP V1.1: 4.4.23

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 61

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.8.30: No
parameter data in
hidden fields

The application must not embed parameter data
about fields in HTML forms in hidden fields in
those HTML forms.

The application is a Web
application that uses
HTML forms

Verify that the application does not embed parameter
data into hidden fields.

V2 BP

4.8.31: Integrity
of sensitive Web
transactions

The application should use hash or digital signature
to ensure the integrity of transmitted forms (user-to-
server) containing sensitive information.

The application is a Web
application:

Verify that the application uses cryptographic means
to ensure the integrity of forms containing sensitive
information. Validate that any cryptographic
components within the application are approved for
use.

V35 BP

4.8.32: Distrust
data received on
untrustworthy
channel

The application should not trust user input or other
user-supplied data that have not been received over
a trustworthy channel, unless those data are
encrypted and digitally signed.

 Verify that the application was designed to validate
the source of all input before processing it. Veri fy
requirement was designed into the application’s
development cycle. Post application development,
verify that the requirement was properly
implemented and functional by conducting 3rd party
source code review.

V32 BP These data include (but are not
limited to) cookies, hidden
forms, email messages, and
files/data containing
reference/pointers to other
files/data sent over
untrustworthy channels.

4.8.33:
Application
response to
untrustworthy
input

The application must never return sensitive
information in response to input from untrustworthy
sources.

 Verify that the application validates all input from
untrustowrthy sources.

V2 BP For even better security, the
application should not respond
at all to input from
untrustworthy sources.

4.8.34: Reject
Web page content
from utrustworthy
sources

The application must not accept Web page content
from any untrustworthy source. The application
must verify and validate the source of any Web page
content before posting that content.

The application is a Web
server application

Verify that the application does not store any
sensitive information in any type of cookie or script.
Inspect the contents of all scripts and cookies to
determine if they contain sensitive data.

V1, V2, V22,
V34

BP

4.8.35: Integrity
of electronic
records

The application cannot be used to bypass the access
controls or to spoof the trusted user to modify data
within database entries/records (data integrity), the
relationships between those entries/records
(relational integrity), or the references to those
entries/records (referential integrity)

The application is a
database application

Verify that the application cannot be used by bypass
the access controls providing data integrity, relational
integrity, and referential integrity to the data in the
database. Verify that the application cannot be used
to enable a user to spoof a trusted user and modify
the data records, relationships, or references.

V2 6 (C2.2.3.23)

4.8.36: Resolution
of mode changes

Before it shuts down, the application must reverse
any changes in the application’s operating mode or
state that occurred during its execution, and must
return to its normal mode and state of operation.

 Verify that before shut down, the application reverts
to normal mode of operation state.

(V29) BP V1.1: 4.4.17

4.11 Availability

This subsection lists requirements governing how applications ensure the availability of the data they manipulate, store, or transmit, as well as the
availability of their own data, executables, and runtime resources. These requirements pertain to applications in environments in which the
independent availability controls provided by the application’s underlying host and surrounding security infrastructure are not considered adequate to
protect the application and/or its data, and thus must be augmented by the application itself at the application layer. See IATF (Reference 27) Section
4.3.4 for a discussion of the processes and technologies involved in availability.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 62

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.9.1: Application
correctness
guarantees data
availability

The application code must not contain errors, bugs,
or vulnerabilities that could cause any executing
process within the application to inadvertently
delete or overwrite data, to incorrectly
assign/change access permissions to that data, or to
otherwise impinge on the data’s availability.

 Verify that the application contains no vulnerabilities,
errors, or bugs that cause application to overwrite
data, misassign or modify access permissions to data,
or otherwise affect data availability.

V36 BP V1.1: 4.5.1, 5.5.1

4.9.2: Server code
resistant to crash

The application code should not include bugs,
errors, or exploitable vulnerabilities that could cause
the executing application to crash.

The application is a
server application.

Verify that application contains no vulnerabilities,
errors, or bugs that cause application to crash.

V36 BP V1.1: 4.5.2, 5.5.1

4.9.3: Server
application
resistant to DoS

The application code must not include bugs, errors,
or exploitable vulnerabilities that could exploited by
a malicious user or program to launch a successful
DoS attack against the application.

The application is a
server application

Verify, using a debugger and through execution
testing, that the application code does not include
bugs, errors, or exploitable vulnerabilities that could
exploited by a malicious user or program to launch a
successful DoS attack against the application.

V36 BP V1.1: 4.5.2, 4.5.7, 5.5.1

4.9.4: Load level
threshold

The application should enable the administrator to
configure a load level threshold, and should stop
processing incoming requests if that threshold is
reached.

The application is a
server application

Verify that the application enables the administrator
to configure a load level threshold for its processing,
and that it ceases to process requests when that
threshold is reached.

V27 BP

4.9.5: Process
timeout

Every application process should be programmed
with a defined threshold for the real time that can be
used by that process. Once this timeout threshold is
reached, the process should clean up all resources
allocated to it by the host computer, and should
terminate.

 Verify that the application has defined t hresholds for
the real time that can be used by each of its
component processes. Verify that when this timeout
threshold is reached for a given process, the process
clean ups all resources allocated to it by the host, and
terminates.

V33 BP V1.1: 4.2.10

4.9.6: Adjust to
unresponsive
output

The application should be configured with a
threshold whereby, if the application attempts to
return data to a requesting client, but that client—or
its network connection—does not respond after a
certain period, the application will release its
session locks and stop waiting for a client response.

The application is a
server application

Verify that the application was designed to detect and
resist denial of service attacks. Verify requirement
was designed into the application’s development
cycle. Post application development, verify that the
requirement was properly implemented and
functional by source code review and DoS testing.

V33 BP

4.9.7: No
interrupts between
interdependent
operations

The application should be coded or configured (in
terms of its interaction with the underlying file
system) in a way that prevents an interruption (i.e.,
to run an unrelated program) between two
operations that are critically dependent on their
sequential operation.

 Verify that the application cannot be interrupted at a
critical point in operation. Verify requirement was
designed into the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by source code review and testing.

V3, V36 BP

4.9.8: Client
resistant to crash,
MAC I

The application code must not include bugs, errors,
or exploitable vulnerabilities that could cause the
executing application to crash.

The application is a
Mission Assurance
Category 1 client
application

Verify that the application contains no vulnerabilities,
errors, or bugs that cause application to crash.

V36 BP V1.1: 4.5.3

Requirement also applies to
clients in other Mission
Assurance Categories when the
clients are considered high
priority.

4.9.9: Client
resistant to DoS,
MAC I

The application code must not include bugs, errors,
or exploitable vulnerabilities that could exploited by
a malicious user or program to launch a successful
DoS attack against the application.

The application is a
Mission Assurance
Category 1 client
application

Verify that the application contains no vulnerabilities,
errors, or bugs that make the application vulnerable
to DoS attacks.

V36 BP V1.1: 4.5.3, 4.5.7

Requirement also applies to
clients in oth er Mission
Assurance Categories when the
clients are considered high
priority.

4.9.10: Secure
state after crash

When the application fails or is affected by an error
condition, that failure/error must not cause the
application to go into an insecure state.

 Verify that an failure or error condition does not
cause the application to go into an insecure state.

V15 2a (DCSS-2),
2b (DCSS-2),
2c (DCSS-2),

V1.1: 4.5.4

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 63

2d (DCSS-2)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 64

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.9.11:
Error/exception
handling

The application must contain an error/exception
handling capability that ensures that the application
executable files and data will not become vulnerable
in case of an application processing failure. The
application must not rely on its programming
language alone to perform error/exception handling.

The application is a
server application

Verify that the application was designed with
independent error handling provisions and that it does
not solely rely inherent programming language
error/exception handling. Verify requirement was
designed into the application’s development cycle.
Post application development, verify that the
requirement was properly implemented and
functional by source code review and testing.
application.

V15 BP

4.9.12:
Error/exception
handling resistant
to DoS

The application’s error handling and recovery
capabilities must be robust enough that they cannot
be overwhelmed by a flood of malformed arguments
from malicious users or processes into a denial of
service state; and the application’s error-handling
mechanism must be able to detect flood attacks and
identify their source, and must be able to terminate
processing related to any subsequent data or
requests from the source of a detected flood attack.

The application is a
server application

Verify that the application’s error handling/recovery
capability is robust enough to resist a denial of
service attack involving a flood of malformed
arguments.

V15 BP V1.1: 4.5.8

4.9 .13:
Application
failure
notification

The application’s error/exception handling
capability must immediately notify the
administrator by email, console message and/or
pager message. The application must enable the
administrator to configure which notification
method(s) will be used.

An application process
has failed.

Verify that the administrator is immediately notified
when an application process fails.

V15 29 (3.2.4.1.1,
3.2.4.1.2)

V1.1: 4.5.5

4.9.14: Detection
of external
failures

The application must b e able to detect failure
conditions in the underlying host and surrounding
infrastructure components with which it interfaces.

 Verify that the application’s error/exception handling
capability is able to detect the failure of an
infrastructure component w ith which it interfaces.
Verify that the application’s error/exception handling
capability is able to detect the failure of an
underlying host component with which it interfaces.

V15, V23 29 (3.2.4.1)

4.9.15:
Error/exception
handling after
infrastructure
failure

The application must contain an error/exception
handling capability that ensures that the application
will avoid compromising the confidentiality,
integrity, and availability of its executable files and
data in case of a failure in one of the underlying host
or infrastructure security mechanisms on which the
application relies. The application’s error handling
capability should terminate the application in an
orderly, secure manner when it detects a failure
(lack of response) in one of the host or infrastructure
security mechanisms on which the application
relies.

The application is a
server application

Verify that the application’s error/exception handling
capability terminates the application when one of its
host or infrastructure security mechanisms fails.

V15 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 65

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.9.16:
Configurable
error/exception
handling

The application’s error handling mechanism must
be configurable to allow the administrator to choose
the way in which the application will respond to a
detected error. At a minimum the options for error
response should include: (1) Entire application
terminates, (2) Erroneous process terminates, (3)
Erroneous process and other selected processes
terminate. In addition, the administrator should be
able to choose one or more actions to be triggered
by an error-related termination. These choices
should include: (1) Termination triggers user
notification, (2) Termination triggers administrator
notification, (3) Termination triggers automatic
checkpoint restart.

 Verify that the application’s error handling
mechanism is configurable to determine error
responses for various conditions (see box on left).
Validate by generating error conditions which
produce error handling output.

V15 BP

4.9.17:
Consistency
check before
restart

Before restart/recovery, the application must
perform consistency checking to verify the validity
of the application’s call arguments, basic state
assumptions, access control permissions and other
security and critical parameters, data, and files.

 Verify that the application ensures the integrity of all
of its call arguments, parameters, state assumptions,
data and files before it restarts.

V15 2a (COTR-1),
2b (COTR-1),
2c (COTR-1);
29 (3.2.4.2)

V1.1: 4.5.6

4.9.18: Trusted
recovery

When the application is restarted, it must not cause
the application to go into an insecure state.

 Verify that a restart does not cause the application to
go into an insecure state.

V15 2a (DCSS-2,
COTR-1), 2b
(DCSS-2,
COTR-1), 2c
(DCSS-2,
COTR-1); 29
(3.2.4.1.4)

V1.1: 4.5.4

4.9.19:
Checkpoint restart

The application must include a checkpoint restart
capability that allows rollback after a transaction
fails to the transaction’s point in processing just
before it failed.

The application is
transaction-oriented.

Verify that upon detecting a transaction failure, the
application roll back to the last validated transaction
point. Verify requirement was designed into the
application’s development cycle. Post application
development, verify that the requirement was
properly implemented and functional by source code
review and testing.

V15 2a (ECDC-1),
2b (ECDC-1),
2c (ECDC-1);

4.9.20: Limit error
message data

Error messages returned by the application should
report at most that a transaction/process has failed,
with a minimal, generic description of the cause of
the failure.

 Verify that the application (in a production type
environment) minimizes the content in error
reporting messages. Verify requirement was designed
into the application’s development cycle. Post
application development, verify that the requirement
was properly implemented and functional by source
code review and testing.

V15 BP

4.9.21: Missing
files

Before attempting to u se any file or directory, the
application must first verify that the file/directory
exists on the system. If the file/directory is missing,
the application must: (1) Return an error message
informing the user that the requested file/directory
cannot be found; (2) Gracefully terminate the user
process through which the user requested the
missing file/directory, and the server process that
searched for that file/directory.

 Verify that the application checks for existence of
requested files and directories. Verify that the
file/directory cannot be found, the application issues
error message to the user warning that requested
file/directory cannot be found, then gracefully
terminates the user process and server process.

V29, V36 BP V1.1: 4.5.9

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 66

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.9.22: Logging
of failure events

The application’s error/exception handling
capability must log all error and failure events to an
error/failure log.

 Verify that the application’s error/exception handling
capability maintains a log file in which it logs
information about all of the application’s error events
and failure events.

V15, (V24) 29 (3.2.4.1.3) V1.1: 4.6.1

4.9.23: No core
dumps

The application’s error/exception handling
capability must not cause the application program to
perform a core dump, except during testing.

 Verify that the application’s error/exception handling
mechanism is sufficiently capable and configurable
to prevent a core dump from occurring in the event of
a processing error.

V15 BP

4.12 Accountability

This subsection lists requirements governing how applications ensure the accountability of users for the activities the perform and the application
processes they spawn while using the application. These requirements pertain to applications for which user accountability via logging of application-
specific events/transactions is required in addition to auditing at the operating system, Web server, and DBMS levels. See IATF (Reference 27)
Section 4.3.5 for a discussion of the processes and technologies involved in accountability.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.10.1:
Audit/event
logging
mechanism

The application must log all security-relevant events
(configured by the administrator) to its own secure
audit/event log, or transmit these data securely to an
external audit collection facility. In high -robustness
applications, this audit mechanism must provide
continuous, automated online auditing.

 Verify that the application logs all security-relevant
events either to its own secure audit file or to an
external audit facility. Verify that, if the application
is high-robustness, the audit mechanism provides
continuous, automated online auditing.

V24 2a (ECAT-2),
2b (ECAT-2),
2c (ECAT-1).
2d (ECAT-2);
27 (7.1.4.7); 29
(3.2.17.5)

V1.1: 4.6.1

4.10.2:
Configurable
audit parameters

The audit facility used by the application must allow
the administrator to select the events to be logged
and the information to be captured about each event.

 Verify that the audit mechanism used by the
application allows the administrator to select types of
events to be logged and type information to capture
about each event.

V24 29 (3.2.3 .2,
3.2.3.4, 3.2.3.8,
3.2.16.7)

V1.1: 4.6.2

4.10.3: Events to
be audited

The application must log the following types of
events to its audit facility, at a minimum: (1) Startup
and shutdown, (2) Authentication, (3)
Authorization/permission granting, (4) Actions by
trusted users, (5) Process invocation, (6) Controlled
access to data by individually authenticated user, (7)
Unsuccessful data access attempt, (8) Data update,
(9) Data deletion, (10) Input validation, (11)
Establishment of network connection, (12) Data
transfer, (13) Application configuration change, (14)
Application of confidentiality or integrity labels to
data, (15) Override or modification of data labels or
markings, (16) Output to removable media, (17)
Output to a printer, (18) For classified applications:
Changes of sensitivity labels on application-
accessed data objects.

 Verify that the application logs the specified list of
events of its audit facility.

V24 2a (ECCD-2),
2b (ECCD -2),
2c (ECCD-1),
2d (ECCD -1,
ECLC-1); 29
(3.2.3.3,
3.2.6.4 .1,
3.2.17.5)

V1.1: 4.6.3

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 67

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.10.4: Binding
UserID to audit
record

The audit facility used by the application must bind
the individual ID of t he user causing (or associated
with) the audited event to the audit record for that
event.

 Verify that the audit facility binds the UserID to the
audit record.

V24 29 (3.2.1.3,
3.2.3.5)

V1.1: 4.6.4

4.10.5: Audit
data, classified or
MAC I
application

Each audit record must include the following
information (as relevant for the type of event): (1)
UserID of user or process ID of process causing the
event, (2) Successful or failure of attempt to access
a security file, (3) Date and time of the event, (4)
Type of event, (5) Success or failure of event, (6)
Seriousness of event (violation, 7) Successful or
failure of login attempt, (8) Denial of access
resulting from excessive number of login attempts,
(9) Blocking or blacklisting a UserID, terminal, or
access port, and the reason for the action, (10) Data
required to audit the possible use of covert channel
mechanisms, (11) Privileged activities and other
system level access, (12) Starting and ending time
for access to the application, (13) Activities that
might modify, bypass, or negate safeguards
controlled by the system, (14) Security-relevant
actions associated with periods processing, or the
changing of security labels or categories of
information, (15) For I&A events: origin of request
(e.g., originating host’s IP address, 16) For write or
delete events: name of data object written or
deleted.

The application handles
classified data or is a
MAC I application.

Verify that application audit records contained the
specified information as indicated.

V24 2d (ECAR-3);
29 (3.2.3.5,
3.2.3.6, 3.2.3.7)

V1.1: 4.6.5

4.10.6: Audit
data, sensitive,
private, or MAC
II application

Each audit record must include the following
information (as relevant for the type of event): (1)
UserID of user or process ID of process causing the
event, (2) Success or failure of attempt to access
security file, (3) Date/time of event, (4) Type of
event, (5) Success or failure of event, (6)
Seriousness of event (violation, 7) Success or failure
of login attempt, (8) Denial of access resulting from
excessive number of login attempts, (9) Blocking or
blacklisting of UserID, terminal, or access port, and
reason for the action, (10) Activities that might
modify, bypass, or negate security safeguards
controlled by the application, (11) For I&A events:
origin of request (e.g., originating host’s IP
address), (12) For write or delete events: name of
data object written or deleted

The application handles
sensitive or unclassified
data that is not publicly
releasable, or is a MAC
II application.

Verify that application audit records contained the
specified information as indicated.

V24 2e (ECAR-2);
29 (3.2.3.5,
3.2.3.6, 3.2.3.7)

V1.1: 4.6.6

4.10.7: Audit
data, public
access or MAC III
application

Each audit record must include the following
information (as relevant for the type of event): (1)
UserID of user or process ID of process causing the
event, (1) Success or failure of attempt to access
security file, (2) Date/time of event, (3) Type of
event, (4) Success or failure of event, (5)
Seriousness of event (violation), (6) For I&A
events: origin of request (e.g., originating host’s IP
address), (7) For write or delete events: name of
data object written or deleted.

The application handles
publicly releasable data
only or is a MAC III
application.

Verify that application audit records contained the
specified information as indicated.

V24 2f (ECAR-1);
29 (3.2.3.5,
3.2.3.6, 3.2.3.7)

V1.1: 4.6.7

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 68

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.10.8: Audit of
schema objects

The application’s audit facility shall log all schema
objects, with auditing able to be turned on or off on
a per-object basis.

The application is
database or directory
application

Verify that all schema objects are being audited (e.g.,
by querying the DBA_OBJ_AUDIT_OPTS table in
Oracle).

V24 BP V1.1: 5.6.1

4.10.9: Audit trail
“fill thresholds”

The audit facility used by the application shall
enable the administrator to set the audit trail “fill
thresholds” as follows: (1) A threshold that
indicates the audit trail is some percentage full,
which shall trigger a notification to the
administrator that the file should be archived and
purged; (2) A threshold that indicates the audit/log
file is full, which shall trigger one of the following
events (configurable by the administrator): graceful
shutdown of the application, OR suspension of user
processing, OR overwriting of the oldest audit
records, OR termination of auditing, OR increase of
storage space allotted for audit records (to an
amount configurable by the administrator).

 Verify that the audit facility application ensures that
the application’s log records are protected from
unauthorized deletion, disclosure, or modification.

V24 29 (3.2.3.1.3) V1.1: 4.6.9

4.10.10: Fill
threshold
notification

The audit facility used by the application shall
notify the administrator when the audit trail’s fill
threshold is being approached. The administrator
shall be able to configure the percentage full at
which the audit trail must be for this notification to
be triggered.

 Verify that the audit facility enables the administrator
to configure “log fill” thresholds and “audit full”
events as indicated. Verify that administrator is
notified by the audit facility when the “almost full”
thresho ld is reached. Verify that the event configured
by the administrator is triggered when the “log full”
threshold is reached.

V24 29 (3.2.3.1.3) V1.1: 4.6.9

4.10.11: Security
violation
notifications,
MAC I
application

The audit facility used by the application must: (1)
Immediately alert the security administrator of all
security violations and unusual or suspicious
activity that might indicate a security violation. (2)
Enable the administrator to configure the audit
facility to automatically shut down the application if
a detected security violation is considered serious
enough to warrant it.

Application is a MAC I
application.

(1) Verify that the administrator is immediately
notified when a security violation is detected. (2)
Verify that the administrator can configure the
violation(s) considered serious enough to warrant
automatically shutting down the application. (3)
Verify that the application does shut down when an
administrator-selected serious violation is detected.

V24 2a (ECAT-2),
2d (ECAT-2)

V1.1: 4.6.11

Serious events constitute
suspicious, unusual, or
inappropriate activities that
indicate possible serious
security violations and warrants
shutting down the application
to prevent escalation of risk.
The administrator should assign
each event a “seriousness”
rating when configuring
auditing for the application.

4.10.12: Audit
viewing and
reporting tool

The audit facility used by the application shall
include a tool that enables the administrator to view
the application’s audit records, and to report against
them.

 Verify that the application audit/event logging
mechanism immediately alerts the administrator
when it detects an actual or potential security
violation. Verify that audit/log mechanism triggers a
graceful shutdown of application if event is
“serious”.

V24 2a (ECRG-1),
2b (ECRG -1),
2c (ECRG-1);
29 (3.2.3.1.5,
3.2.3.9,
3.2.3.10,
3.2.3.11)

V1.1: 4.6.12

4.10.13: Audit
failure

The application must notify the administrator and,
as configured by the administrator, either: (1)
Shutdown the application, OR (2) Suspend user
processing, OR (3) Initiate an automatic restart of
the audit facility

The application audit
facility has failed

Verify that the audit facility provides a tool for
viewing and reporting against application audit
records.

V15 29 (3.2.3.1.4) V1.1: 4.6.10

4.10.14: Integrity
and availability of
audit records

The audit facility used by the application shall
ensure that the application’s audit records are
protected from deletion or unauthorized
modification.

 Verify that the application logs all security-relevant
events either to its own secure audit file or to an
external audit facility.

V2 2a (ECTP-1), 2b
(ECTP-1), 2c
(ECTP-1); 29
(3.2.3.1,

V1.1: 4.6.8

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 69

3.2.16.8)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 70

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.10.15:
Confidentiality of
audit records

The audit facility used by the application shall
ensure that the application’s audit records are
protected from unauthorized disclosure.

 Verify that the audit mechanism u sed by the
application allows the administrator to select types of
events to be logged and type information to capture
about each event.

V2 2a (ECTP-1), 2b
(ECTP-1), 2c
(ECTP-1); 29
(3.2.3.1,
3.2.16.8)

V1.1: 4.6.8

4.10.16: Access
control of audit
data and processes

The access controls used by the application shall
prohibit read, write, delete, execute, move, or copy
access to the application’s audit records and
processes by unauthorized users.

 Verify that the application’s access control
mechanisms prevent unauthorized users from gaining
read, write, execute, delete, move, or copy access to
any of the application’s audit files or processes.

V2 2a (ECTP-1), 2b
(ECTP-1), 2c
(ECTP-1); 29
(3.2.3.1.1,
3.2.3.1.2,
3.2.16.8)

V1.1: 4.6.8

4.13 Non-Repudiation

This subsection lists requirements governing how applications ensure non-repudiation by users of activities they perform, processes they spawn, and
data they create, modify, delete, or transmit while using the application. These requirements are pertinent for applications whose users must be held
accountable for individual transactions, particularly those transactions performed using different application components over a network (e.g., email
user agent and email server, browser and Web server, directory user agent and directory server, etc.) for which traditional auditing and logging would
not be sufficient to maintain and easily track user accountability, as well as those applications for which non-repudiation is a legal requirement. See
IATF (Reference 27) Section 4.3.5 for a discussion of the processes and technologies involved in non-repudiation.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.11.1: Proof of
transmission

The application must invoke a NIST- or NSA-
approved digital signature technology (e.g., SHA-1,
DSA, RSA) appropriate to the application’s Mission
Assurance Category to enable the creator/sender to
digitally sign the data/keys the application is used to
create or transmit overThe network.

The application requires
non-repudiation by the
creator or sender of data
or cryptokeys
transmitted via yhe
application.

Verify that the application invokes appropriate
approved digital signature technology to enable users
to digitally sign data/cryptokeys prior to
transmission.

V24 2a (DCNR-1),
2b (DCNR-1),
2c (DCNR-1);
27 (4.5.3.8,
7.1.4.6); 29
(3.2.14.1)

V1.1: 4.7.1

4.11.2: Proof of
delivery

The application must invoke a NIST- or NSA-
approved digital signature technology (e.g., DSS)
appropriate to the application’s Mission Assurance
Category to enable recipient to sign data received
viaThe application.

The application requires
non-repudiation by the
recipient of data
received viaThe
application.

Verify that the application invokes appropriat e
approved digital signature technology to enable users
to digitally sign data upon receipt.

V24 27 (7.1.4.6); 29
(3.2.14.2)

V1.1: 4.7.2

4.11.3: Digital
signature
validation

The application must invoke a digital signature
validation facility to validate all digital signatures
applied to data or cryptokeys it receives over the
network or retrieves from a database or directory.

 Verify that receiving application validates digital
signatures on data/cryptokeys it receives over a
network.

V24 27 (7.1.4.6) V1.1: 4.7.3

4.11.4: Protection
of signature
security data

The application must protect from tampering with
and inappropriate disclosure of the cryptokeys and
certificates it uses for digital signature processing.

 Verify that the application’s digital signature-related
cryptokeys and certificates are adequately protected
from tampering and inappropriate disclosure.

V2 BP V1.1: 4.7.4

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 71

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.11.5: Digital
signature of email
messages

The application must invoke a PKI for digital
signature of messages using Class 3 identity
certificates, with a transition to Class 4 identity
certificates requiring minimal modification to the
application code byThe deadline specified in DOD
PKI Policy.

The application is a
messaging or email
application.

Verify that email application supports digital
signature using Class 3 certificates and can
accommodate use of Class 4 with minimal
modification to application code.

(V23) 3 (Digitally
Signed Email);
29 (3.2.21.3,
3.2.21.9)

V1.1: 4.7.5

4.11.6: Digital
signature of
sensitive Web
input

The application should use digital signature to
ensure the non -repudiation of transmitted forms
(user-to-server) containing sensitive information.

The application is a Web
application

For input deemed sensitive, verify that the
application uses digital signatures on transmitted
forms for purposes of non-repudiation. If digital
signature is invalid, input should be rejected.

V24 BP V1.1: 4.7.1

4.14 Preparation for Deployment

This subsection lists requirements governing how the application the application is prepared for deployment—e.g., “clean up” of application code,
installation and configuration in anticipation of operation, etc. These requirements apply to all applications (within the constraints defined in the
Assumptions and Constraints for a given requirement), regardless of what security functions they perform.

Requirement Description Assumptions and
Constraints

Test Objective Vulnerabilit y
Addressed

Policy Source Note

4.12.1: Cleanup
for deployment

Remove any residual backup files, temporary files,
File Transfer Protocol (FTP) programs, and
debugging files, tools, accounts, passwords, debug
and test flags, and other unnecessary files and
developer “backdoors” from the application code
and its underlying host environment.

 Verify that the application code and the platform on
which it runs contain no unnecessary files or
developer “backdoors” of any kind.

V17, V36 BP V1.1: 4.0.11

4.12.2: Remove
debug options

Do not deploy code that has been compiled with
debugging options.

 Verify that the final, production version of the
deployed application was compiled with debug
options disabled.

V17, V36 BP

4.12.4: Remove
source code
comments

Remove all references and comments from
HTML/source code that reveal features of the
application’s design, underlying Web server or file
system directory structure. Such information
includes (but is not limited to): (1) Directory
structures, (2) Location of the Web root, (3) Debug
information, (4) Cookie structures, (5) Problems
associated with development, (6) Developers’
names, email addresses, phone numbers.

The application contains
HTML code or other
source code that can be
displayed by end-users.

Verify that H TML or other source code contains no
comments that include information that could be
exploited by an attacker to attack the application or
its host environment.

V29, V36 BP V1.1: 4.0.13

4.12.5:
Automatically
generated HTML
tags

Remove all non-standard, erroneous (e.g., syntax
errors), and unnecessary tags from HTML code.
Also remove all tags that are not browser neutral
(i.e., that are intended to optimize the code for a
particular browser).

The application contains
HTML that was
automatically generated
y a Web authoring tool

Verify that the HTML code contains no tags that
serve no obvious purpose, or that cause the Web page
to: () display in an unexpected way; () crash,
“freeze”, or otherwise detrimentally affect the
operation of the browser; () unintentionally jiggle,
flash, wobble, etc; () display differently in browsers
from different vendors.

V29 BP

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 72

Requirement Description Assumptions and
Constraints

Test Objective Vulnerability
Addressed

Policy Source Note

4.12.6: Default
accounts

Disable all default accounts if not absolutely
necessary. Change passwords on any default
accounts that remain.

The application includes
COTS components

Verify that the application (and platform that contains
it) has had all default accounts disabled. Verify that
the platform has undergone the STIG process.

V29 2a (ECSC-1),
2b (ECSC-1),
2c (ECSC-1),
2d (IAIA-2), 2e
(IAIA-2)

4.12.7:
Unnecessary calls

Remove any calls from the application code that do
not accomplish anything.

 Verify that any unnecessary calls from the
application have been removed from the application
code. Verify by source code review and testing.

V25, V36 BP Examples of unnecessary calls
are calls to external processes
or libraries that do not exist,
have been replaced.

4.12.8: Access
control
configuration

Access controls shall be configured to enforce
access restrictions in accordance with Paragraph
C2.2.7 Table C2. T5 of ASD C3I Memorandum,
“Policy Guidance for Use of Mobile Code
Technologies in Department of Defense (DOD)
Information Systems”, 7 November 2000.

The application is an
electronic records
management application

Verify that the access controls relied upon by the
application are configured in accordance with the
referenced document.

V2 6 (C.2.2.7)

4.12.9: STIG-
compliant
configuration

The installed application’s runtime environment
(underlying Web server, database management
system, operating system, infrastructure
components, etc.) must be configured in compliance
with all relevant STIGs. If there is a STIG that is
relevant for the application itself, the application
must be configured according to this STIG.

 Verify that the underlying host, and all middleware,
infrastructure, and related components that comprise
the application’s runtime environment are configured
in accordance with all relevant STIGs. Verify that the
application itself is configured in accordance with the
relevant application STIG, if one exists.

V29 1 (4.18); 2a
(ECSC-1), 2b
(ECSC-1), 2c
(ECSC-1)

4.12.10:
Assignment of
privileges

Trusted accounts/roles (e.g., Administrator) must be
assigned privileges to access trusted functions only,
and not to any non-trusted functions. Non-trusted
accounts/roles (e.g., User) must be assigned
privileges to access non-trusted functions only, and
not to any trusted functions.

 Verify that accounts for administrators and other
trusted user roles have been granted privileges to
perform the trusted functions associated with those
roles, and are not allowed to perform any non-trusted
(end-user) functions. Verify that accounts for end
users and other non-trusted roles have been granted
privileges to perform only non-trusted functions.

V26 V1.1: 5.2.1, 5.2.2, 5.2.5, 5.2.6,
5.2.7

4.12.11: PBAC or
RBAC
configuration

The application’s access controls—DAC and
MAC—must be configured so that they grant or
deny access to users and processes based on the
privileges authorized to those users/processes under
the application’s PBAC or RBAC scheme.

 Verify that the application’s access controls are
configured to be consistent with the role-associated
privileges assigned to different roles under the RBAC
scheme implemented by the authorization mechanism
used by the application.

V2, (V26); 2a (ECPA-1),
2b (ECPA-1),
2c (ECPA-1)

An example: DACs on the
application’s configuration files
should be configured to grant
write-access to all users in the
Administrator role, read-access
to Process role, and no access
to any other role.

4.12.12: No
“nobody” account

The Web server’s “nobody” account should be
disabled, and all programs and scripts that are
intended to run as the Web server’s “nobody” user
should be modified to run under a specific
username.

The application is a Web
server application.

Verify that the server has been configured are in
accordance with Security Technical Implementation
Guides (STIGs). Speci fically, verify that the web
server’s “nobody” account has been disabled, if
applicable.

V29 BP

4.12.13: System
library access
controls

Access controls on all system libraries accessed by
the application must be configured to protect the
application’s privileged programs, and to prevent
introduction of unauthorized code.

The application is a
server application.

Verify that the server’s access controls have been
configured to prevent unauthorized access to the
application’s privileged programs, and to prevent
introduction of code by unauthorized users.

 2a (DCSL-1),
2b (DCSL -1),
2c (DCSL-1)

4.12.14: Host
access controls

Access controls in the host infrastructure that
provides the application access to any security
infrastructure components must isolate through
partitioning all infrastructure security components’
processes invoked by the application, as well as the
application’s security-related processes, in separate
execution domains that are separate from non-
security processes.

 Verify that the server’s access controls partition all
security component processes and application
processes that use those security component
processes into separate execution domains that are
separate from non-security processes.

 2a (DCSP -1),
2b (DCSP -1)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 73

(Page intentionally blank)

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 74

APPENDIX A: ACRONYMS AND ABBREVIATIONS

ACL: Access Control List

AES: Advanced Encryption Standard

AFS: Andrew File System

ANSI: American National Standards Institute

API: Application Programmatic Interface

ASD C3I: Assistant Secretary of Defense for Command, Control, Communications & Intelligence

C&A: Certification and Accreditation

CAC: Common Access Card

CASE: Computer Aided Software Engineering

CIO: Chief Information Officer

CERT: Computer Emergency Response Team

CGI: Common Gateway Interface

CJCS: Chairman of the Joint Chiefs of Staff

CINC: Commander-in-Chief

COE: Common Operating Environment

CORBA: Common Object Request Broker Architecture

COTS: Commercial-off-the-Shelf

CRL: Certificate Revocation List

CPU: Central Processing Unit

CSL: Computer Systems Laboratory

DAC: Discretionary Access Control

DBA: Database Administration

DBMS: Database Management System

DCOM: Distributed Component Object Model

DES: Data Encryption Standard

DID : Defense in Depth

DII: Defense Information Infrastructure

DISA: Defense Information Systems Agency

DISAI: Defense Information Systems Agency Instruction

DITSCAP: Department of Defense Information Technology Security Certification and Accreditation Process

DGSA: Department of Defense Goal Security Architecture

DoS: Denial of Service

DOS: Disk Operating System

DOD: Department Of Defense

DODD: Department of Defense Directive

DSD: Deputy Secretary of Defense

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 75

EAL: Evaluation Assurance Level

E-mail: Electronic Mail

FTP: File Transfer Protocol

FIPS: Federal Information Processing Standard

GENSER: General Service

GIG: Global Information Grid

GUI: Graphical User Interface

HTTP: Hypertext Transfer Protocol

HTML: Hypertext Markup Language

I&A: Identification and Authentication

IA: Information Assurance

IATF: Information Assurance Technical Framework

IAVA: Information Assurance Vulnerability Alert

ID: Identification

IIS: Internet Information Server

IPC: Interprocess Communication

ISS: Internet Security Systems

KRL: Key Revocation List

MAC: Mandatory Access Control

MAC I: M ission Assurance Category I

MAC II: Mission Assurance Category II

MAC III: Mission Assurance Category III

MS: Microsoft

NFS: Network File System

NIAP: National Information Assurance Partnership

NIST: National Institute of Standards and Technology

NSA: National Security Agency

OPSEC: Operations Security

OS: Operating System

OSD: Office of the Secretary of Defense

OWASP: Open Web Application Security Project

PDF: Portable Document Format

PHP: PHP Hypertext Preprocessor

PKE: Public Key Enabling

PKI: Public Key Infrastructure

QA: Quality Assurance

RBAC: Role-Based Access Control

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 76

SAMI: Sources and Methods Intelligence

SBU: Sensitive But Unclassified

SETUID: Set User Identification

SETGID: Set Global Identification

SFDG: Security Features Developers Guide

SGA: System Global Area

SML: Strength of Mechanism Level

SNAC: Systems and Network Attack Center

SNMP: Simple Network Management Protocol

SP: Special Publication

SQL: Structured Query Language

SRS: Software Requirements Specification

SSI: Server Side Include

SSL: Secure Sockets Layer

SSO: Single Sign-on

STD: Standard

ST&E: Security Test and Evaluation

STIG: Security Technical Implementation Guide

SYS: System

SYSDBA: System Database Administrator

SYSOPER: System Operator

TAFIM: Technical Architecture Framework for Information Management

TCB: Trusted Computing Base

TS/SCI: Top Secret/Sensitive Compartmented Information

URL: Uniform Resource Locator

VBA: Visual Basic for Applications

VPN: Virtual Private Network

WSH: Windows Scripting Host

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 77

APPENDIX B: REFERENCES

This section lists policies, instructions, guidance, and application working groups that were used as
sources when specifying the application security requirements in this document. The section also
lists recognized sources of best practices for application and software security consulted when
developing this document.

B.1 DOD-Wide Policy and Guidance

1. Department of Defense Directive (DODD) 8500.1, “Information Assurance (IA)” (24 October
2002)

2. DOD Instruction (DODI) 8500.2, “Information Assurance (IA) Implementation” (6 February
2003), and specifically the following attachments:

a. E4.A1. Attachment 1 to Enclosure 4: Mission Assurance Category I Controls for Integrity and
Availability

b. E4.A2. Attachment 2 to Enclosure 4, Mission Assurance Category II Controls for Integrity and
Availability

c. E4.A3. Attachment 3 to Enclosure 4: Mission Assurance Category III Controls for Integrity
and Availability

d. E4.A4. Attachment 4 to Enclosure 4: Confidentiality Controls for DOD Information Systems
Processing Classified Information

e. E4.A5. Attachment 5 to Enclosure 4: Confidentiality Controls for DOD Information Systems
Processing Sensitive Information

f. E4.A6. Attachment 6 to Enclosure 4: Confidentiality Controls for DOD Information Systems
Processing Publicly Released Information

3. ASD C3I Memorandum, “Department of Defense (DOD) Public Key Infrastructure (PKI)”, 12
August 2000 (known as DOD PKI Policy).

4. ASD C3I Memorandum, “Public Key Enabling (PKE) of Applications, Web Servers, and
Networks for the Department of Defense (DOD)”, 17 May 2001 (known as DOD PKE Policy).

5. ASD C3I Memorandum, “Policy Guidance for Use of Mobile Code Technologies in Department
of Defense (DOD) Information Systems”, 7 November 2000 (known as DOD Mobile Code Policy),
specifically Enclosure 1.

6. DOD 5015.2-STD, Design Criteria Standard for Electronic Records Management Software
Applications, (19 June 2002).

7. Chairman of the Joint Chiefs of Staff (CJCS) S3231.01, Safeguarding the Single Integrated
Operational Plan (U), 30 November 1993.

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 78

8. DOD Technical Architecture Framework for Information Management (TAFIM), volume 6, DOD
Goal Security Architecture (DGSA), 30 April 1996.

9. DOD Web Site Administration Policies and Procedures, 25 November 1998.

10. DOD Computer Emergency Response Team (CERT) Information Assurance Vulnerability
Alerts (IAVA).

11. Deputy Secretary of Defense (DSD) Memorandum, Web Site Administration, 7 December 1998.

12. X.509 Certificate Policy for the United States Department of Defense, Version 6.0 (31 May
2002).

13. Department of Defense Target Public Key Infrastructure Operational Requirements Document
(20 August 2001), specifically Section 1.4.1.2, “PK-Enabled Application Operation”.

14. Department of Defense Directive 85xx.xx (DRAFT), “Biometric Technologies”, Version 6.3.51
(undated). NOTE: This draft policy is based on ASD C3I Memorandum on Biometrics dated 19
January 2001, and Deputy Secretary of Defense Memorandum on Biometrics dated 27 December
2000.

15. Office of the Secretary of Defense (OSD) Memo, “Privacy Polices and Data Collection on DOD
Public Web Sites” (13 July 2000), which is based on and in compliance with OMB Director Jacob J.
Lew’s Memorandum to the Heads of Executive Departments and Agencies (M-00-13, 22 June
2000).

16. Department of Defense (DOD) Class 3 Public Key Infrastructure (PKI) Public Key-Enabled
Application Requirements (13 July 2000).

17. ASD C3I Memorandum, “Public Key Infrastructure (PKI) Policy Update” (21 May 2002).

18. ASD(C3I) Action Memo, “Updated Guidance for Public Key Infrastructure Policy Milestones”
(4 February 2002).

B.2 DISA Policy and Guidance

19. DISA Defense Information Infrastructure (DII) Common Operating Environment (COE)
Security Software Requirements Specification (SRS), Version 4, 20 October 1998.

20. DISA DII COE/GCCS/GCSS Application Security Requirements and Assessment Guidance
Document (draft), 22 March 2002.

21. DII COE UNIX Application and Kernel Developer’s Security Guidance.

22. DII COE Windows NT Application and Kernel Developer’s Security Guidance.

23. DII COE 4.2.0.0 Security Features Developers Guides (SFDG).

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 79

24. DISA Instruction (DISAI) 630-230-19, Information Systems Security Program, July 1996.

25. DISA Web Application Security Technical Implementation Guide (STIG), Version 2, Release 2,
27 February 2001.

26. DISA Database Security Technical Implementation Guide (STIG), 28 September 2001.

B.3 Intelligence Community Policy and Guidance

27. NSA Information Assurance Technology Framework, Release 3.1, September 2002.

28. NSA Network Applications Team of the Systems and Network Attack Center (SNAC): Guides
to the Secure Configuration and Administration of COTS Servers.

29. Defense Intelligence Agency: DII COE Security Requirements Specification (SRS), Version 4
(20 October 1998)

B.4 Civilian Agency Policy and Guidance

30. National Institute of Standards and Technology (NIST) Special Publication (SP) 800-26,
Security Self-Assessment Guide for Information Technology Systems, November 2001. Web
Reference: http://csrc.nist.gov/publications/nistpubs/800-26/sp800-26.pdf

31. NIST Special Publication (SP) 800-44, Guidelines on Securing Public Web Servers, February
2002.

B.5 Best Practices

32. Open Web Application Security Project (OWASP): “The Ten Most Critical Web Application
Security Vulnerabilities” (13 January 2003).

33. David Scott and Richard Sharp, University of Cambridge: “Developing Secure Web
Applications”, in IEEE Computer Society, Securing Your Systems for 2003 and Beyond (November-
December 2002).

34. Joseph Yoder and Jeffrey Barcalow: “Architectural Patterns for Enabling Application Security”
(1998).

35. Internet Security Systems, Inc.: Database Scanner, Version 4.2.0.

36. Razvan Peteanu: “Best Practices for Secure Development”, Version 4.03 (October 2001).

Draft Recommended Application Security Requirements, Version 2.0 14 March 2003

FOR INFORMATION PURPOSES 80

37. Andrew Jaquith, @Stake Research Report: “The Security of Applications: Not all Are Created
Equal” (February 2002).

